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Abstract Herbivory is a key process that controls the

abundance and accumulation of algal turf on tropical coral

reefs. The capacity of reefs to prevent algal accumulation

hinges on the balance between algal production and con-

sumption (i.e., grazing). In this study, we quantify algal turf

biomass accumulation and grazing using experimental

substrata and herbivore exclusion cages across sites in

Kenya that represent different levels of fisheries manage-

ment: heavily fished reefs, community marine-protected

areas less than 10 yr old, and older government-managed

marine-protected areas. These reefs had different assem-

blages of grazing herbivores with fished reefs being dom-

inated by sea urchins, while government closures had a

high abundance of grazing fishes, in particular parrotfishes.

The community fisheries closures had an intermediate mix

of sea urchins and grazing fishes, with the latter dominated

by surgeonfishes. These management regimes mediated

algal biomass on experimental substrata such that urchins

consumed as much as 90% on fished reefs and fishes as

much as 96% at the government marine-protected areas by

the end of the 390-d trial. The younger community fisheries

closures lacked the herbivory to significantly reduce algal

biomass, and consumption was less than 50% of production

and never greater than 2 g algae m-2 d-1. These findings

point to the importance of recovery dynamics of herbivo-

rous fishes from heavy fishing pressure. They also suggest

that while sea urchins might be effective grazers to prevent

macroalgal dominance, they are not a functional replace-

ment for fishes due to their ability to reduce reef accretion

through bioerosion and prevent settlement of crustose

coralline algae in this system.

Keywords Consumers � Ecosystem functioning � Grazing
pressure � Phase shift � Western Indian Ocean

Introduction

Herbivory is important in mediating benthic composition

on coral reefs (McManus and Polsenberg 2004; Cheal et al.

2010). Some studies have shown that herbivory is more of

a driving factor in preventing macroalgal dominance on

reefs than bottom-up factors, such as sunlight and nutrients

(Burkepile and Hay 2006; Heck and Valentine 2007;

Rasher et al. 2013). Others, however, have shown that

bottom-up processes are the dominant drivers of coral reef

benthic composition (Enochs et al. 2015; Russ et al. 2015).

Disturbances (e.g., coral bleaching) also play a key role in

shaping the benthos with the loss of live coral and a con-

comitant increase in algal production (Ledlie et al. 2007).

Therefore, the capacity of reefs to maintain coral domi-

nance largely relies on the balance between ability of

grazers to remove algae after a disturbance and rates of
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algal production (McManus and Polsenberg 2004; Marshell

and Mumby 2012). Thus, fisheries management can have

substantial impacts on coral–algal relationships by influ-

encing the abundance and types of herbivores present

(McClanahan 1995; Mumby et al. 2007; Rasher et al. 2013;

Bozec et al. 2016).

Quantifying the foraging by herbivores can be chal-

lenging in a natural setting because of their mobility,

feeding behaviors, and the difficulty of making direct

observations of multiple species or functional groups

simultaneously. Previous studies have measured con-

sumption rates of one or a few species of fish and generally

found that total food intake, or grazing impact, increases

linearly with fish biomass (Klumpp and McKinnon 1989;

Montgomery et al. 1989; Bruggemann et al. 1994a, b, c;

1996). Others have found that algal turf intake increases

nonlinearly with fish size (Bonaldo and Bellwood 2008;

Lokrantz et al. 2008). It is clear that spatial and temporal

variation exists among herbivore functional groups in their

grazing rates and how this relates to size (Choat and

Bellwood 1985; Marshell and Mumby 2015; Holbrook

et al. 2016; Tebbett et al. 2017). For example, feeding

differences may be a function of behavior (e.g., territori-

ality, predator avoidance, and method of feeding) as well as

factors such as the influence of temperature on grazer

metabolic requirements, algal nutritional quality, and algal

abundance and availability (Carpenter 1988; Ferreira et al.

1998b; Smith 2008; Afeworki et al. 2011; Kelly et al.

2016). Interference competition between fishes and sea

urchins has also been shown to impact algal consumption

(Hay and Taylor 1985). Given this variation in algal for-

aging on coral reefs, there is a need to more accurately

quantify herbivory by key functional groups such as algal

turf grazers more accurately.

It is clear that parrotfishes (family Labridae) serve a

critical role on coral reefs worldwide in promoting

ecosystem functioning and coral dominance. Parrotfishes

have been shown to have strong effects on algal abundance

and thus preventing phase shifts while promoting reef

resilience and structural complexity (Mumby et al.

2006, 2007). Parrotfishes are, however, often overfished on

coral reefs (McClanahan and Mangi 2001; Bellwood et al.

2003; Hawkins and Roberts 2004; McClanahan et al.

2013). Overfishing results in not only declining abun-

dances, but also reductions in mean body size due to size-

selective harvesting (Russ 1991; Shin et al. 2005; Bellwood

et al. 2012). Reefs dominated by small (\ 15 cm) parrot-

fishes may not have consumption rates high enough to

control turf algae (Mumby 2006; Lokrantz et al. 2008;

Taylor et al. 2015; but see Bellwood et al. 2012). The

recovery dynamics of parrotfishes are especially critical in

Kenyan coral reef systems due to their ability to impede

algal succession and maintain reefs with high coral cover

(McClanahan 1997; McClanahan and Humphries 2012;

Humphries et al. 2014). Complementing the role of par-

rotfishes on coral reefs are surgeonfishes, or algal turf

grazers primarily in the family Acanthuridae. For example,

the brown surgeonfish (Acanthurus nigrofuscus) feeds on

sparse algal turfs tearing filaments and thus preventing

macroalgal establishment (Polunin et al. 1995). In many

coral reefs, sea urchins are also important algal turf grazers

that exert primary control of algae and their removal

inhibits coral settlement (Hughes 1994). These various

herbivores can play complimentary roles or compete for

shared resources impacting functional redundancy in the

ecosystem (Hay and Taylor 1985).

Herbivory rates on coral reefs have typically been esti-

mated by the extrapolating results from a few select spe-

cies, scaling up metabolic requirements of species, or using

exclusion cages and experimental substrata (but see

Robinson et al. 2019). The results from such experiments

in the Caribbean and Great Barrier Reef suggest that even

robust herbivorous fish populations may only be able to

consume 30 to 40% of net algal production (Williams et al.

2001; Mumby et al. 2007). Other studies suggest herbi-

vores are able to remove up to, and greater than, 100% of

algal turf production (Hatcher 1981; Carpenter 1986; Van

Rooij et al. 1998; Russ 2003; Kopp et al. 2010). Simulation

models have estimated that sea urchins are able to graze as

much as 40–50% of the substratum but also assume fish

and sea urchins can graze the same areas (i.e., no inter-

ference competition; Mumby 2006; Sebastián and

McClanahan 2013). To our knowledge, there have been no

empirically derived algal consumption values for herbivore

communities across reefs that include both fishes and sea

urchins. Thus, in this study we measure algal production

and consumption using a selective herbivore exclusion

experiment across a gradient of herbivore abundance and

composition. Specifically, we compare algal turf herbivory

by fishes and sea urchins together, just fishes, and just sea

urchins using exclusion cages in Kenyan reef lagoons. The

fringing coral reefs of Kenya provide an ideal system to

study these processes because they represent a wide range

of herbivore community composition that is mediated by

management (i.e., marine-protected areas; McClanahan

2019).

Materials and methods

Study sites

To sample across a gradient of herbivore assemblages, we

collected data in 2011 and 2012 from sites representing

distinct fisheries management regimes: two heavily fished

open access reefs, two younger no-take marine-protected
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areas (community closures), and two older marine-pro-

tected areas (government closures) (Humphries et al.

2014). We regarded management regimes as experimental

treatments, and sites representing these treatments were

interspersed (Fig. 1). The two community closures, Kur-

uwitu and Mradi, have received protection from fishing

since 2005 and 2010, respectively, and are both approxi-

mately 0.3–0.4 km2 in size. The other two marine-pro-

tected areas are government closures, Mombasa and

Malindi, and have received protection from fishing since

1991 and 1968, respectively; Mombasa is approximately

6 km2 in size, whereas Malindi is 10 km2. Fishing at

Kanamai and Ras Iwatine is intense and highly unselective

with a variety of gear types being used (e.g., spear guns,

nets, traps).

Herbivore surveys

Sea urchins were identified to species and counted in

10 m2, haphazardly placed circular plots (n = 9–18 per

site). Wet weight was estimated by multiplying the number

of individuals by wet weights per species using locally

derived values from species collected previously in these

sites (McClanahan and Shafir 1990). Herbivorous fishes

were counted and identified to species with fish size (total

length, TL), estimated to the nearest 10 cm by underwater

visual census (via snorkel) using 2-4 haphazardly placed

replicate belt transects (5 9 100 m) per site. Parrotfishes

under 10 cm TL were grouped together as ‘‘juveniles’’ due

to the difficulty of identifying them to the species level in

the field. Transects were conducted during neap tides when

the water was between * 1 and 4 m deep. Mass was

determined by converting fish counts to biomass using

published length–weight relationships (Letourneur et al.

1998; Froese and Pauly 2006). Herbivorous fishes were

assigned to functional groups based on published infor-

mation on diets as well as morphology and behavior

(Froese and Pauly 2006; Green et al. 2009). For example,

fishes that consume fleshy macroalgaeHoey were consid-

ered browsers (excluded in this study) and those feeding on

algal turf were either scrapers (parrotfishes) or grazers (i.e.,

algal croppers and surgeonfishes). There are only two

species of rabbitfishes at the study sites (Humphries et al.

2015), Siganus sutor and Siganus argenteus, and they were

not considered algal turf grazers because previous research

in this system (Humphries et al. 2014, 2015) and associated

video recordings have shown them to exclusively consume

seagrass or be primarily croppers of red and green

macroalgae (Hoey et al. 2013). Algal croppers and detri-

tivores were combined into one functional group (herein

referred to as ‘‘grazers’’). No excavating parrotfishes were

recorded during these surveys.

Algal biomass

To determine algal biomass accumulation at reefs, exper-

imental substrata were made from * 2.5-cm cross sections

of massive Porites coral (mean plate size ± SE was

184 ± 11 cm2; n = 288 plates). Plates had flat surfaces but

irregularly shaped edges. Holes were drilled in individual

plates allowing them to be attached to plastic cage flooring

(1 9 1 m), which was nailed into bare substratum. Indi-

vidual plates were deployed in sets of 4 and attached at

least 5 cm apart from one another on the same piece of

flooring to form a single replicate. Three experimental

treatments were created to allow access to the plates by

different groups of herbivores: (1) cage treatments, which

represented a control for site-specific, bottom-up differ-

ences in environmental variables, or herbivore exclusion

preventing animals[ 2.5 cm minimum dimension (de-

fined as ‘‘large herbivores’’), (2) fence treatments that

allowed herbivory only by fishes, and (3) open treatments

that allowed herbivory by both fishes and sea urchins.

Cages and fences were made from plastic mesh material

(2.5 9 2.5 cm square holes) and attached to bare substra-

tum using u-bolts. Cages were approximately 1 91 9

0.5 m (L 9 W 9 H) in size. The previous work has found

that cages similar to these had no significant effect of on

algal standing crop or species composition other than the

effect of excluding grazers (Humphries et al. 2014). Sea

urchins were unable to climb the sides of the fences and

enter the treatments (Humphries personal observation). At

each reef site, treatments were deployed in four blocks,

each including one replicate from each treatment. Blocks

were placed[ 20 m apart from one another, and

Fig. 1 Study sites differing in management where government

closures are administered by the Kenya Wildlife Service and are

older than the more newly established community closures admin-

istered by fishers, both of which do not allow fishing. Open access

reefs have no restrictions on fishing Modified from Humphries et al.

(2014)
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treatments within blocks were\ 3 m apart. Areas for

deployment were typical of the larger reef areas and away

from damselfish territories. We began the algal production

experiment during the southeast monsoon season between

September and October 2011, which is the beginning of the

calm season.

Algal biomass (expressed per unit area; g algae m-2)

was quantified as (dry) algal biomass. To do this, we fol-

lowed methods similar to Russ (2003) and scraped a 5 9

5 cm area on each plate at all treatments at regular time

intervals (Samples were taken a total of 6 times over

the * 390 d duration of the experiment.) We sampled

areas that seemed typical of the whole plate, and it was not

possible to determine the area of the plate that was previ-

ously scraped. All algal samples were immediately placed

on ice and returned to the laboratory where wet weight was

initially recorded. Samples were then dried at 60 �C to a

constant weight and ground in a Wiley mill and weighed

(dry calcified weight). To remove calcium carbonate and

determine dry algal weight (or weight of organic matter

only), we placed the samples in 10% acetic acid for 24 h

(stirring regularly), vacuum-filtered them onto Whatman

ashless filters, rinsed them with deionized water, and dried

them at 60 �C to a constant weight (hereafter referred to as

‘‘algae’’). All weights were measured to the nearest

0.001 g. Samples were processed in this manner to have

units comparable to those in similar studies (Bruggemann

et al. 1994a, b; Van Rooij et al. 1998; Russ 2003; Paddack

et al. 2006; Marshell and Mumby 2012), where units rep-

resent grams of dry organic material or algae.

Algal consumption

To calculate the proportion of algal biomass consumed by

herbivores, we quantified the percentages consumed by

fishes (CF) and sea urchins (CSU) at each sampling event

using the equations

CF ¼ 1� BF

BC

� �� �
� 100

and

CSU ¼ 1� B0

BC

� �� �
� 100

� �
� CF

where BC is algal biomass at the cage treatment, BF is algal

biomass at the fence treatment, and BO is algal biomass at

the open treatment (i.e., the observed percentage of algal

biomass consumed). The total percentage consumed by

both fishes and sea urchins was calculated by summing CF

and CSU. To calculate algal turf consumption rates (g algae

m-2 d-1), we divided the algal biomass removed at each

treatment as described above (BF, BC, BO), but divided

each by the number of days between sampling events to get

a daily average.

Data analyses

We used separate one-way analyses of variance (ANOVA)

to test for a site effect on: (a) fish biomass (by functional

group and total) and (b) sea urchin biomass. Significant

differences were followed by Tukey tests. Using a two-way

ANOVA, we tested for the effects of site and treatment,

and their interaction, on algal biomass at the final sampling

event. Finally, algal consumption was compared using one-

way ANOVA with site as the main effect for: (a) all her-

bivores and (b) each functional group. All data analyses

were performed using the software program ‘‘R’’ (v. 3.1.2;

R Development Core Team 2014).

Results

Herbivore surveys

Total grazing fish biomass was significantly different

across sites (df = 5, F-value = 61.23, p\ 0.001; Fig. 2). It

was lowest at the fished sites and greatest at the govern-

ment closure sites, with community closures in between

(Table S1). Mombasa, a government closure site, however,

was not significantly different from either community

closure site. Fish biomass of both grazers (df = 5,

F-value = 198.98, p\ 0.001) and scrapers (df = 5, F-

value = 10.08, p\ 0.05) was significantly different across

sites. For grazers, the open access sites of Kanamai and Ras

Iwatine had significantly less biomass than the community

closures, Mradi and Kuruwitu, as well as one government

closure site, Mombasa (Table S1). Malindi had signifi-

cantly greater grazer biomass than any other site. The

government closures had significantly greater biomass of

scraping fishes than all the other sites, and there was no

significant difference between the fished sites and the

community closure sites (Table S1). Sea urchins were

significantly different across sites (df = 5, F-value = 13.95,

p\ 0.01); the greatest urchin biomass was at the fished

sites and community closures, which were significantly less

than the government closure sites, Mombasa and Malindi

(Fig. 1, Table S1).

Algal biomass

Overall, algal biomass over the * 390-d period is grouped

by management category for the open and caged treat-

ments. At the fished sites, algal production was signifi-

cantly limited by sea urchin herbivory; at the community

closure sites, algal biomass increased in all three
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treatments, suggesting that fish herbivory, either alone or

together with urchin herbivory, was insufficient to prevent

accumulation of algal biomass; at the government closure

sites, algal production was significantly limited by fish

herbivory (Fig. 3). The interaction term (site * treatment)

was statistically significant in this model (df = 10, F-

value = 13.01, p\ 0.05), meaning that algal biomass at

the final sampling event is differed by site across the

treatment levels.

Generally, algal biomass increased rapidly in the cage

treatments (no herbivory) at all six sites and then leveled

off after * 100–150 d and remained at * 150 g algae

Fig. 2 Mean (± SE) grazing herbivorous fish and sea urchin biomass (g m-2) by study site and management. Letters represent homogeneous

subgroups for total turf grazing fishes and sea urchins (p\ 0.05) identified using one-way ANOVA and individual contrasts

Fig. 3 Time series of the mean (± SE) algal biomass (g algae m-2) at the six study sites, grouped by management. Shapes indicate treatment,

and asterisks indicate significant differences between the first and last sampling events (p\ 0.05)
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m-2 for the remainder of the experiment at each site. These

values were all significantly greater (p[ 0.05) than at the

beginning of the experiment (Fig. 3). The open access

fished reefs showed significant increases in algal biomass

by the end of the experiment at the fence treatments

(p\ 0.05), but not the open treatments where sea urchins

could access the plates. At the community closures, all

treatments tracked similar trajectories and were signifi-

cantly different from zero at the end of the experiment

(p\ 0.001); these experimental substrata all had greater

than 80 g algae m-2 at the conclusion of the experiment.

At the government closure sites, the only treatment to show

a significant increase in algal biomass was the cage treat-

ment (p\ 0.001). The fence and open treatments never

reached above 35 g algae m-2 throughout the experimental

period. Accumulation of algal biomass after * 390 d did

not differ between sites at the caged treatments (df = 5, F-

value = 0.627, p = 0.681).

Algal consumption

Total algal turf consumption was greatest at the open

access fished sites ([ 2.6 g algae m-2 d-1) and the gov-

ernment closures (total[ 2.3 g algae m-2 d-1), but did not

differ significantly among sites (df = 5, F-value = 0.08,

p = 0.99; Fig. 4). Total algal turf consumption at the

community closure sites of Mradi and Kuruwitu was 1.65

and 1.56 g algae m-2 d-1, respectively. Sea urchin con-

sumption varied significantly by site (df = 5, F-value =

8.82, p\ 0.01). Consumption at both of the open access

sites, Kanamai and Ras Iwatine, was significantly greater

than at the government closures, Mombasa and Malindi (t-

values\- 3.72, p\ 0.05). Fish consumption of algae

varied significantly by site (df = 5, F-value = 13.38,

p\ 0.001), with the open access and community closure

sites exhibiting lower values than the government closures

(Fig. 4).

At the open access sites, greater than 85% of algal turf

was consumed at the end of the experiment on the open

treatments (urchin and fish herbivory; Table 1). Similarly,

at the government closures, 89% and 96% of algal pro-

duction were consumed for Mombasa and Malindi,

respectively. In contrast, the community closures had only

26% (Kuruwitu) and 44% (Mradi) of total algal production

consumed at the end of the experiment.

Discussion

The level of fishing pressure reflected marine-protected

area management and mediated herbivore community

composition in this study, which led to different rates of

algal accumulation and consumption. The two management

regimes characterized by herbivore communities able to

prevent significant algal biomass by the end of the exper-

iment were the government fisheries closures and the fished

reefs, but each was maintained by different grazing func-

tional groups: fishes in the closures and sea urchins at the

fished reefs. In these two management systems, at least

85% of algal biomass was consumed. In fact, herbivores

were able to consume as much as 96% of algal turf biomass

where herbivory was greatest. In contrast, the relatively

small, new community-based marine protected areas had

an intermediate mix of algal turf grazing functional groups

containing both fishes and sea urchins. These herbivores

were not able to suppress algal turf biomass, which seemed

to stabilize at between 100 and 150 g m-2 within the first

150 d. These results show how fishing and marine-pro-

tected area management can shape the algal turf grazing

community on reefs and how closures that are transitioning

from fishing may lack the herbivory necessary to prevent

algal accumulation.

In the absence of significant herbivory, algal biomass

stabilized on the experimental substrata in this study after

100–150 d. This seems to represent an upper limit to algal

biomass in this system, which is 7-25 times greater than

where herbivory was high due to either sea urchins or

fishes. This is consistent with other studies that displayed a

significant effect of grazing on algal biomass, with biomass

quickly reaching a plateau in the absence of herbivores

(e.g., Sammarco et al. 1974; Adey et al. 1977; Connor and

Adey 1977; Carpenter 1986; McClanahan 1997). Similar

patterns have also been demonstrated at a regional scale in

the Caribbean since the mass mortality of the urchin Di-

adema antillarum (Carpenter 1988; Schutte et al. 2010).

Additionally, several other studies outside the Caribbean

have documented large increases in macroalgae following

exclusion of herbivores (e.g., Hughes et al. 2007; Smith
Fig. 4 Mean (± SE) algal turf consumption rate (g algae m-2 d-1) of

fishes and sea urchins across sites and management categories
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et al. 2010; Doropoulos et al. 2013; Webster et al. 2015).

Nutrient concentrations and ratios were not measured in

this study directly, but controlled for with the caged

treatments (no herbivory), and algal production was not

significantly different among sites. Thus, any possible

increases in nutrient supply from increased fish biomass

and waste or riverine discharge (e.g., Rasher et al. 2012,

Burkepile et al. 2013) could have been masked by local-

level differences in nutrient concentrations as shown at

these sites in McClanahan (1997). Teasing apart these

environmental drivers of algal production would help us to

better understand factors other than herbivory that may

control these algal communities.

Some small fleshy macroalgae (i.e., Padina) developed

on the experimental plates in the caged treatments of this

study. These established within the first 100 d but rarely

covered more than 25% of the plates. This resembles some

reefs from the Caribbean in the sense that macroalgae

settled quickly to the substratum, or within the first few

months (e.g., Morrison 1988, Sotka and Hay 2009, Ferrari

et al. 2012). However, it differs from these Caribbean

studies in that the macroalgae did not proliferate to reach

levels of 60–100% cover. Instead, macroalgae and result-

ing algal production stabilized at similar values as those

found in Fiji, Hawaii, and the Great Barrier Reef (Scott and

Russ 1987; Hixon and Brostoff 1996; Rasher et al. 2012;

Kelly et al. 2017). So, while settlement of macroalgae was

quick on these reefs in the absence of herbivory, settled

algae did not continue to proliferate and increase as in

many Caribbean reefs. Seasonality did not play a signifi-

cant role in these findings as there is only a calm and windy

season that does not affect daylength or other environ-

mental variables significantly (McClanahan 1988). There

is, however, the possibility that micrograzers such as

damselfishes influenced the maximum algal biomass

observed as it was not possible to avoid or exclude them

completely even when care is taken not to place cages in

their territories (Russ 1987).

Spatial differences in the intensity of grazing may also

dictate whether herbivores are able to suppress algal pro-

duction effectively. For instance, herbivore communities

may aggregate in areas and increase their foraging rates in

response to increases in algal production and water

temperature, thus creating patches of ungrazed areas (Horn

and Gibson 1990; Ferreira et al. 1998a; Russ 2003).

Understanding these fluctuations and responses is critical

for reef management and avoiding macroalgal phase shifts,

but parsing out the various mechanisms has proven difficult

(van Nes and Scheffer 2005). In fact, one of the more

significant oversimplifications in the rapid ecological

transition models is that ecosystems are spatially homo-

geneous (Scheffer and Carpenter 2003). Nonetheless, over

the 390-d period of this experiment, our results were rel-

atively steady across spatial scales after the ini-

tial * 100 d, and no disturbances significantly influenced

algal biomass at the caged treatments where there was no

herbivory.

Exploitation of herbivorous fishes has the ability to

reduce grazing intensity and ecosystem functioning on

reefs drastically if other species cannot fill their niche

(Bellwood et al. 2004). Here, sea urchins appear to be

capable of effectively replacing fishes in terms of algal turf

removal on the two fished reefs. This transition, however,

was not linear and consumption was not strong enough to

avoid algal accumulation at reefs in the community-man-

aged fisheries closures. Consequently, management and the

recovery dynamics of fishes that are associated with the

interaction of the age (and size) of marine protected areas

may be especially important in this system if one is to

achieve the desired grazing levels that prevent macroalgal

phase shifts (Claudet et al. 2008). Findings from other

studies indicate this is especially critical for scraping par-

rotfishes greater than 20 cm in length, which tend to

require more than 10 yr of protection to recover and have a

large grazing impact on reefs (McClanahan et al. 2007;

Lokrantz et al. 2008). Furthermore, sea urchins are bio-

eroders that have been shown to significantly reduce reef

accretion and prevent settlement of crustose coralline algae

aside from algal turf consumption (Mokady et al. 1996,

O’Leary and McClanahan 2010). Therefore, the replace-

ment of grazing fishes with sea urchins on heavily fished

reefs does not mean the reefs are functionally equivalent.

These differences in influencing organic versus inorganic

reef production may influence their desirability to

managers.

Table 1 Algal turf biomass

biomass (g algae m-2) from

caged treatments and amount

(%) consumed by herbivores in

open treatments after * 390 d

Management Site Algal biomass (g algae m-2) Algal turf consumed (%)

Open access Kanamai 113.9 90

Ras Iwatine 154.8 86

Community closure Kuruwitu 143.8 26

Mradi 142.3 44

Government closure Mombasa 151.9 89

Malindi 122.8 96
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In this study system, marine-protected areas mediated

interactions between sea urchins and parrotfishes and pre-

vented them from co-occurring in high densities. This

could be due to a combination of factors, one being the

recovery of the orange-lined triggerfish (Balistapus undu-

latus), a major sea urchin predator (McClanahan and

Muthiga 2016). Populations of this fish tend to recover

fully after approximately 10 yr following the establishment

of a of marine-protected area at which point it drives sea

urchin wet weight down to values less than 10 kg/ha on

reefs (McClanahan 2000). Another factor preventing sea

urchins and parrotfishes from co-occurring on these reefs

might be competition for shared algal resources. Food

quality and availability have been shown to limit parrotfish

feeding (Targett and Targett 1990), and parrotfish quickly

occupies reefs where sea urchins have been removed (Hay

and Taylor 1985). Thus, the functional redundancy of algal

turf grazers in this ecosystem is low and competitive

interactions between species occupying a similar niche, as

well as predator–prey dynamics, shape these relationships.

The transition between urchin-dominated reefs and par-

rotfish-dominated reefs might be expedited by the removal

of sea urchins upon designation of a marine protected area

to free up substratum and allow parrotfish to occupy reefs

more quickly. Similar management and urchin-parrotfish

interactions occurred on reefs across the Caribbean in the

1970s and 80s (Hay 1984), making heavily fished reefs

more vulnerable to macroalgal phase shifts during the Di-

adema die-off in the 1990s (Hughes 1994).

This study shows how marine-protected areas can

increase the biomass of fish that graze algal turf, leading to

high consumption rates that prevent algal buildup on

experimental substrata. Reefs that were heavily fished were

able to do the same but through the medium of sea urchins.

The previous work in this system shows that parrotfish

takes approximately 10 yr to recover, as do urchin preda-

tors (McClanahan et al. 2007). The community fisheries

closures in this study were less than 10 yr old, and there-

fore, the algal turf grazing niche was in the process of

transitioning from urchin-dominated to parrotfish-domi-

nated control (McClanahan 2000, McClanahan et al. 2007,

Humphries et al. 2014). During this transition period, algal

turf herbivory is not high enough to prevent the develop-

ment of significant algal biomass, thus putting reefs in a

vulnerable state through phase shifts due to environmental

shocks such coral bleaching that might free up additional

substrata for algae proliferation (McClanahan et al. 2002;

Adam et al. 2015). Overall, our findings highlight the

transition from fished to protected areas as a period of

particularly high vulnerability to algal dominance. Conse-

quently, it is not simply the cessation of fishing that is

important, but also the replacement of urchins by fishes as

the dominant algal turf grazers.
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