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Abstract

Interactions between predators and their prey are influenced by the habitat they occupy. Using created oyster (Crassostrea
virginica) reef mesocosms, we conducted a series of laboratory experiments that created structure and manipulated
complexity as well as prey density and ‘‘predator-free space’’ to examine the relationship between structural complexity and
prey survivorship. Specifically, volume and spatial arrangement of oysters as well as prey density were manipulated, and the
survivorship of prey (grass shrimp, Palaemonetes pugio) in the presence of a predator (wild red drum, Sciaenops ocellatus)
was quantified. We found that the presence of structure increased prey survivorship, and that increasing complexity of this
structure further increased survivorship, but only to a point. This agrees with the theory that structural complexity may
influence predator-prey dynamics, but that a threshold exists with diminishing returns. These results held true even when
prey density was scaled to structural complexity, or the amount of ‘‘predator-free space’’ was manipulated within our
created reef mesocosms. The presence of structure and its complexity (oyster shell volume) were more important in
facilitating prey survivorship than perceived refugia or density-dependent prey effects. A more accurate indicator of refugia
might require ‘‘predator-free space’’ measures that also account for the available area within the structure itself (i.e., volume)
and not just on the surface of a structure. Creating experiments that better mimic natural conditions and test a wider range
of ‘‘predator-free space’’ are suggested to better understand the role of structural complexity in oyster reefs and other
complex habitats.
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Introduction

Structural complexity is the physical arrangement of objects in

space [1], and is a fundamental property of all ecological systems.

By varying the availability and type of microhabitats available,

structural complexity may influence predator-prey interactions

and have significant impacts on the local faunal community (e.g.,

[2,3,4,5,6]). For example, habitats that are more complex often

contain a greater diversity of refuges from predators [5,7] and

greater diversity (or amount) of food resources [8] thereby

reducing the intensity of interaction strengths. Increased structural

complexity may alter encounter rates between predators and their

prey, often decreasing predation risk by interfering with predator

maneuverability and/or the ability to visually detect prey [7,9,10].

Furthermore, by decreasing the visibility of predators or

obstructing prey movement, structural complexity may negatively

impact prey survivorship [11,12,13]. Understanding the potential

effects of habitat structure and its complexity on prey survivorship

is becoming increasingly important as anthropogenic and climate-

induced stressors are significantly changing the physical and

ecological structure of many ecosystems.

Across multiple habitat types, studies have demonstrated that

increased prey survivorship occurs with increasing structural

complexity, but often with diminishing returns as complexity

continues to increase [14,15,16,17,18,19,20,21]. In contrast to most

previous experiments, two recent studies scaled predator and prey

densities to the density, or amount of available habitat (submerged

aquatic vegetation) using the rationale that naturally occurring

complex habitats often have higher densities of animals when

compared to simple habitats [22,23]. Neither of these studies found

increased structural complexity to consistently lead to greater prey

survivorship [22,23]. Field studies also differ in their conclusions

with some finding greater survivorship in more complex habitats

[24,25,26], while others have demonstrated that the effects of

structural complexity may vary by the type of fish, or the type of

habitat being examined [13]. Clearly, the interaction of predator-

prey dynamics and structural complexity is multifaceted, and

patterns may differ depending on the species of interest, habitat type

examined, range of structural complexity tested, and even the

definition (or method of measurement) of complexity used.

Creating standard methods for objectively describing structural

complexity within and across systems has proved to be difficult
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[18,27,28,29,30,31]. Complexity may include a quantitative

measure of the amount or density of structure itself, as well as a

qualitative measure of the heterogeneity or diversity of structures

[32]. Both measures depend on the scale in which they are

ecologically relevant [27]. Fractal geometry is one suggested

quantitative measure of structural complexity because of its multi-

scale nature and applicability across systems [33]. This method is

independent of the nature of a habitat and describes an object’s

surface and whether it becomes more convoluted (and thus

approaching a 3-dimensional object) [31]. However, the resolution

at which one measures the fractal geometry may significantly

influence results and therefore makes it difficult to determine scale

a priori [34]. An alternative method of quantifying structural

complexity may be achieved by measuring the frequency and size

of interstitial spaces between units of structure along vertical and

horizontal axes (Sp) along the surface of the structure [28]. This

method may then be extended to include predator size (Pr) [18].

The result is a dimensionless index (Sp/Pr) that describes the

perceived amount of prey refuge, or amount of interstitial space

where prey are safe from predation (‘predator-free space’). In other

words, Sp/Pr is intended to quantify the functional result of the

structural complexity within a habitat (amount of refuge available

to the organism of interest) as experienced by the organism(s), and

is not simply a physical measurement. This index has been shown

to be strongly related to macroinvertebrate abundance and species

richness which further validates its usefulness in quantifying

structural complexity [31].

In this study, we examined the relationship between prey

survivorship and habitat structure and its complexity, and whether

these interactions are influenced by prey density or the amount of

‘predator-free space’. For the purposes of this study, ‘structure’

refers to any object in space, whereas ‘structural complexity’ refers

to the morphological characteristics within a structure itself, or the

arrangement of objects in space [1]. We chose the Sp/Pr index as

a measure of ‘predator-free space’ as opposed to fractals because of

its generality to all structures, its ease of measurement, the lack of

significant spatial scale effects, and its high correlation with species

abundance and richness in a natural setting [31]. In the lab, we

used oyster (Crassostrea virginica, hereafter ‘oyster’) shell to create

mesocosm reefs with different levels of structural complexity, then

quantified the survivorship of grass shrimp (Palaemonetes pugio) in

the presence of a predator (wild red drum, Sciaenops ocellatus). As an

ecosystem engineer, oysters and the reefs they create are

hypothesized to provide many ecosystem services [35], including

altering local species composition [36] or facilitating increased

prey survivorship.

The goal of this study was to test the hypothesis that oyster reefs

enhance prey survivorship (i.e., the presence of structure per se),

and to examine how further changing reef structural complexity,

prey density, and ‘predator-free space’ may impact actual prey

survivorship. The first experiment (Expt 1) used a fixed number of

predator and prey individuals across treatments of variable levels

of structural complexity. This experiment was designed to test for

the effects of structure (per se) and increasing structural complexity

on prey survivorship. The second experiment (Expt 2) used the

same structural treatments as the first experiment, but scaled the

density of prey across treatments. This allowed testing for the

effects of prey density on prey survivorship with structure present

and across different structural complexities. The third experiment

(Expt 3) used the same prey density treatments as the second

experiment, but altered the amount of ‘predator-free space’ (by

increasing interstitial space) in each structural treatment. This was

designed to test for the effects of ‘predator-free space’ on prey

survivorship.

Materials and Methods

Ethics Statement
All necessary permits were obtained for the described study.

We operated under a scientific collection permit from the

Louisiana Department of Wildlife and Fisheries to Dr. Megan

La Peyre (S-03-2009, S-105-OYS-2010). No endangered or

protected species were collected during this project. Furthermore,

nekton were collected under the Institutional Animal Care and

Use Committee permit 08-005 to Dr. Megan La Peyre through

the Louisiana State University Institutional Animal Care and Use

Committee.

Predator and Prey Species
The red drum is a common, estuarine-dependent species that

reaches its greatest abundance in the northern Gulf of Mexico

(GOM) [37] and may use oyster reefs as feeding habitat [38]. It is

an opportunistic feeder throughout all life stages [39] and uses

mechanoreception as its primary foraging technique, with vision

used secondarily [40]. The size and composition of prey consumed

by red drum remain relatively constant with increasing body size

[41]. When available, shrimp species (e.g., Litopenaeus setiferus,

Palaemonetes pugio, Penaeus aztecus) often constitute the bulk of red

drum diet [39].

Shrimp belonging to the genus Palaemonetes are among the most

abundant and ecologically dominant species in coastal estuaries of

the southeastern United States [42]. As potential prey items and

detritivores, grass shrimp represent a vital link in the energy

transfer of tidal marsh ecosystems [43]. In the presence of

predators, grass shrimp select oyster-shell pyramids over seagrass

and shallow water habitats as refuge [44].

Collection and Maintenance of Experimental Species
Red drum (32.662.3 cm) were captured at Rockefeller State

Wildlife Refuge in Grand Chenier, Louisiana, or near Cocodrie,

Louisiana, using hook and line. Grass shrimp (30.965.9 mm) were

collected along marsh edges at Caillou (Sister) Lake in Terrebonne

Parish, Louisiana, Cypremort Point State Park in St. Mary Parish,

Louisiana, and near Cocodrie, Louisiana, using a seine (5 x 2 m).

Fish and shrimp were collected in February, 2009, for Expt 1, and

in April, 2010, for Expt 2 and 3. Organisms were transported to

the laboratory and held in cylindrical, recirculating fiberglass tanks

(350 L) equipped with bio-filters (AST Bead Filter, Aquaculture

Systems Technologies, LLC, New Orleans, Louisiana) for 2 weeks

before trials were initiated. In these tanks, salinity was maintained

between 13 and 17 (14.960.2), temperature between 22 and 28uC
(26.460.4), ammonia less than 0.15 ppm, and oxygen concentra-

tions between 6.1 and 9.0 mg L21 (6.660.2) using multiple air

stones. Fluorescent lights (40W) were placed above the holding

tanks and a 12:12 h light-dark regime was maintained throughout

the experiments. Individual red drum was kept in isolation in

separate tanks while grass shrimp were grouped together in two

holding tanks. Red drum were fed frozen penaeid shrimp, and

grass shrimp were fed wet cat food.

Experimental Mesocosms
All trials were conducted in 2 recirculating, rectangular

fiberglass tanks (length x width x height: 180690640 cm) located

side by side in a room adjacent to the holding tanks (Table 1). The

bottom of each experimental tank was left bare, and water depth

was maintained at 35 cm. Water quality characteristics (salinity,

temperature, dissolved oxygen, ammonia concentration) were

measured before and after each trial, and fluorescent lights (40 W)

were placed above the experimental tanks and operated on a
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12:12 h light-dark regime. A clear plexiglass cover was placed on

top of each experimental tank to prevent escape by either species.

All three experiments had a control treatment which consisted of a

clean tank with no shell. For Expt 1 and 2, three other treatments

were created by piling clean, unaggregated oyster shells in a

pyramid shape (Table 1), with an average gap size in the structure

of 26.3624.7 mm. This method of reef creation was intended to

mimic oyster reefs commonly found in the northern GOM where

reefs have very few vertically oriented oysters due to the extensive

oyster harvest activities coast-wide. For Expt 3, two other

treatments were created by cementing shells together to create a

structure with increased interstitial space between shells (Table 1),

with an average resulting gap size of 48.4679.4 mm. This method

was used to mimic conditions of healthy reefs in the northern

GOM where oysters primarily grow in a vertical orientation. A

‘high’ treatment was not created in Expt 3 because any difference

in structure from the ‘intermediate’ treatment would have crested

the surface and protruded out of the tank given the dimensions of

the reef footprint (45660 cm). Structural complexity was mea-

sured by determining shell volume via water displacement as well

as calculating the Sp/Pr index [18]. For the Sp/Pr index, three

horizontal and three vertical axes were randomly determined on

the reef. The total number of gaps along each axis was counted,

and the width or height (depending whether it was on a horizontal

or vertical axis), was also measured (to the nearest mm). The gaps

were then averaged across both horizontal and vertical axes and

divided by the average predator size (operculum to operculum

width, to the nearest mm). An Sp/Pr value under 1.0 means the

fish predator cannot access the average gap size to reach potential

prey within the shell matrix. Each experimental reef covered about

20% of the tank bottom, with the remainder of the tank bare. No

structure was used for the control treatments in each experiment

(only the predator and prey were in the tank). Pilot runs involving

both predator and prey indicated there were no so-called corner

effects [15] where prey may be able to hide from predators by

aggregating in the corners of the tank.

Experimental Trials
The densities of P. pugio used represent a realistic range of

densities found in estuarine environments in the northern GOM

[36,45]. Predator density was kept constant (1 individual per tank)

for two reasons. One, while the abundance of resident species

living within the shell matrix of oyster reefs has been found to

increase with reef area or habitat complexity [46,47], the

abundance of transient, predatory species does not always increase

[38,48]. Two, the size of our experimental tanks and reefs would

make two red drum difficult to manage, and controlling predator

density allowed us to more easily interpret complexity and prey

density variations.

All treatments in each experiment were replicated 5 times.

Treatments were assigned randomly to experimental tanks and

days. Each trial was run for 24 h (beginning at 8 am) and consisted

of first partitioning the tank (separating the treatment area) with a

barrier. For each trial, randomly selected shrimp were added to

the treatment side of the tank and one red drum (starved for 48 h)

was added to the empty side. Red drum were randomly selected

and used more than once, but never in consecutive trials. We

observed no ‘learned’ behaviors in the fish and no individuals were

used more than twice. Initial observations indicated that red drum

needed time to acclimate to their new surroundings (.1 h),

therefore, organisms were allowed 2 h to acclimate before

removing the barrier, and the trial allowed interactions for 22 h.

After each trial was complete, the red drum was removed followed

by the oyster shell. Remaining shrimp were then quantified and

removed, and water quality (salinity, temperature, dissolved

oxygen, ammonia) measured. Pilot runs with no predator

indicated a . 98% recapture rate of shrimp.

Statistical Analysis
All data were tested for normality and homogeneity of variance;

no transformations were necessary. To examine the effects of

structure and structural complexity on prey survivorship within

Table 1. Shell volume (L m22), prey density (ind. m22), and index of ‘predator-free space’ (Sp/Pr) for each experiment by treatment
type (n = 5).

Treatment Shell volume (L m22) Prey density (ind. m22) ‘Predator-free space’ (Sp/Pr)

Expt 1

Control 0 148
148

0

Low 7.4 148 0.61

Intermediate 11.1 148 0.53

High 18.5 148 0.46

Expt 2

Control 0 148 0

Low 7.4 148 0.61

Intermediate 11.1 222 0.53

High 18.5 444 0.46

Expt 3

Control 0 148 0

Low 7.4 148 1.53

Intermediate 11.1 222 1.33

Expt 1 used a fixed number of predator and prey individuals across treatments of variable levels of structural complexity. Expt 2 used the same structural treatments as
the first experiment, but scaled the density of prey across treatments. Expt 3 used the same prey density treatments as the second experiment, but altered the amount
of ‘predator-free space’ (by increasing interstitial space) in each structural treatment. Control treatments had no structure.
doi:10.1371/journal.pone.0028339.t001
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each experiment, pair-wise comparisons of least squared means,

using a two-way ANOVA, followed by Tukey HSD, were run for

each experiment with treatment and day as the factors, and prey

survivorship (the proportion of the number of prey initially stocked

minus the number of prey recovered) as the response variable. Day

was included as a randomized block factor and the model was

independent of order. To examine the effects of prey density on

prey survivorship, individual contrasts were run between each

respective treatment in Expt 1 and 2 (e.g., control Expt 1 vs.

control Expt 2; low Expt 1 vs. low Expt 2). To examine the effects

of increased interstitial space (or decreased predator-free space) on

prey survivorship, individual contrasts were run between Expt 2

and Expt 3 (e.g., low Expt 2 vs. low Expt 3). Data are reported as

mean 6 1 SE unless indicated differently.

Results

In Expt 1, a fixed number of prey (i.e., 40) was added to each

treatment and prey survivorship ranged from 4.5 to 89.5%

(F1,16 = 153.3, p,0.001; Table 2). Prey survivorship was signifi-

cantly lower in the control (4.5%) treatment than the low

treatment (71.5%; p,0.001), and survivorship in both control

and low were significantly lower than the intermediate treatment

(84.5%; p = 0.01) (Fig. 1). However, prey survivorship did not

differ significantly between the intermediate and high treatments

(89.5%; p = 0.28). The other factor in the model, day, was not

significant.

In Expt 2, the number of prey used was scaled to the same

structural treatments as Expt 1 (e.g., increasing structural

complexity meant increasing the number of prey individuals used)

and prey survivorship ranged from 11.5 to 86.1% (F1,16 = 103.0,

p,0.001; Table 2). The same trends among treatments in Expt 1

were present in Expt 2: survivorship in the control treatment

(11.5%) was significantly lower than the low treatment (64.0%;

p,0.001), as well as between the control, and low and

intermediate (80.0%) treatments (p,0.01) with no difference

between the intermediate and high (86.1%) treatments (p = 0.21)

(Fig. 1). The other factor in the model, day, was not significant.

In Expt 3, the number of prey used was scaled as in Expt 2, but

low and intermediate structural treatments were changed to

increase predator-free space. Prey survivorship ranged from 11.5

to 76.3% (F1,12 = 58.4, p,0.001;Table 2) with significant differ-

ences between control and low treatments (54.5%; p,0.001), as

well as low and intermediate (76.3%; p,0.01) (Fig. 1). The other

factor in the model, day, was not significant.

Individual contrasts between treatments in Expt 1 and Expt 2,

examining the effects of prey density on survivorship, showed no

significant differences at any level of structural complexity

(Table 3). Similarly, contrasts between Expt 2 and Expt 3,

examining effects of predator-free space showed no significant

differences either (Table 3). While not significant (p = 0.055), the

contrast between low treatments in Expt 2 and 3 showed a trend of

lower survivorship in Expt 3 as compared to Expt 2.

Discussion

Clearly, structure provided by the mesocosm oyster reefs

facilitated enhanced prey survivorship. Prey survivorship increased

with increasing oyster reef (structural) complexity, but only to a

certain point at which point increasing structural complexity failed

to further increase survivorship. Neither scaling prey density to

structural complexity (shell volume), nor increasing the ‘predator-

free space’ (Sp/Pr) significantly changed these findings. This

suggests that survivorship of grass shrimp from red drum was

dependent on the presence of structure and its complexity (oyster

shell volume) more so than effects of predator-free space or

density-dependent prey effects. The latter conclusion is based on

the assumption that in our experimental mesocosms, increasing

the number of prey would increase predator-prey encounter rates

when refuge space became limited.

Table 2. Results from each experiment showing the number of prey added (ind), mean number of prey removed (ind 6 1
standard error), mean prey survivorship, and two-way ANOVA results (F-value).

Treatment Prey added Prey removed Prey survivorship ANOVA result

Expt 1 153.3***

Control 40 1.8 (1.6) 0.045

Low 40 28.6 (1.2) 0.715

Intermediate 40 33.8 (1.0) 0.845

High 40 35.8 (1.3) 0.895

Expt 2 103.0***

Control 40 4.6 (2.0) 0.115

Low 40 25.6 (1.5) 0.640

Intermediate 60 48.0 (0.6) 0.800

High 120 103.4 (2.2) 0.861

Expt 3 58.4***

Control 40 4.6 (2.0) 0.115

Low 40 21.8 (2.1) 0.545

Intermediate 60 45.8 (2.5) 0.763

Prey added represents the number of initially stocked individuals per trial. Prey removed represents the number of individuals remaining in the tank after each trial, and
the prey survivorship is the number of prey recovered divided by the number of prey added. Expt 1 used a fixed number of predator and prey individuals across
treatments of variable levels of structural complexity. Expt 2 used the same structural treatments as the first experiment, but scaled the density of prey across
treatments. Expt 3 used the same prey density treatments as the second experiment, but altered the amount of ‘predator-free space’ (by increasing interstitial space) in
each structural treatment. Control treatments had no structure. * p,0.01, ** p,0.001, *** p,0.0001.
doi:10.1371/journal.pone.0028339.t002
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Prey survivorship may be dictated by top-down effects if the

ability to detect and escape from predators, or the availability of

refuges is a function of habitat structure and its complexity. In

estuarine and marine systems, structural complexity associated

with vegetation is generally regarded as a feature that increases

prey survivorship, presumably through the provision of spatial

refuges and by moderating competitive interactions of predators

[49,50]. However, complex habitats may not always benefit prey,

especially if a prey’s ability to escape is impeded by the structure

[13] or density-dependent effects related to encounter rates are

present [22]. Similar patterns exist in terrestrial systems where

certain prey might choose accessibility to escape routes over

potential concealment; for example, woody vegetation has been

shown to have both positive and negative effects on predation risk

[51,52]. The physical structure provided by the oyster reefs in this

study differs markedly from other structural features which may be

flexible (i.e. seagrass) and represent only a visual barrier to

predator detection. The solid nature of the oyster shell reefs may

impede not only predator vision, but also movement and access. It

may therefore be the functional characteristics of physical

structure (e.g., flexible, malleable, or solid substrate) which are

most important in dictating prey survivorship and therefore make

comparisons across studies difficult.

The influence of habitat structure on prey survivorship within a

community is complex. Our results generally agree with theory

that habitat structure and its complexity increase prey survivorship

to a point [20]. However, because of the scale and artificial nature

of laboratory experiments, generalization of these findings should

be done with caution. In a natural environment, while the

presence of oyster reefs may be able to support a greater biomass

of associated nekton species compared to unstructured habitat, it

may not always mean that increasing complexity provides superior

habitat [53]. For instance, multiple-predator effects can often have

important and very different consequences for their prey through

interference interactions as well as intra- and interspecific

competition, and may in fact override structural differences within

habitats [54,55]. A series of studies examining multiple predator

effects in simple and complex created oyster reefs found that the

effects of complexity may vary depending on predator identity

when more than one predator is considered [6,55,56]. In this

study, we conducted a mesocosm experiment with a simplified

food web (using only one predator and one prey species). Our

findings may differ given a different predator-prey combination, or

by adding other predators.

Scaling predator and/or prey abundance with habitat com-

plexity may better mimic conditions found in nature [22]. Recent

studies showed that vegetated treatments which simultaneously

increased complexity and predator and prey densities, did not

consistently result in differences in prey survivorship [23]. One

possible explanation for this is that complexity might have

decreased foraging efficiency, but whatever increase in survivor-

Figure 1. Prey survivorship (no. prey removed/no. prey initially
stocked) by experiment. Vertical bars represent prey survivorship
(mean 6 1 standard error), or the proportion of prey that survived in
each treatment. Different letters represent significant (p,0.05) differ-
ences among treatments. Expt 1 used a fixed number of predator and
prey individuals across treatments of variable levels of structural
complexity. Expt 2 used the same structural treatments as the first
experiment, but scaled the density of prey across treatments. Expt 3
used the same prey density treatments as the second experiment, but
altered the amount of ‘predator-free space’ (by increasing interstitial
space) in each structural treatment. Control treatments had no
structure.
doi:10.1371/journal.pone.0028339.g001
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ship resulting from increased complexity was cancelled out by

having more predators and prey. As a result, this may have

increased prey encounter rates. However, encounter rates can only

be inferred as direct observations of behavior are absent. While

these experiments may mimic nature better than others by

confounding influences, conclusions from these experiments are

difficult and some might consider them impossible. When we

scaled only prey density with complexity, we found no significant

difference in prey survivorship when compared to not increasing

prey density. This suggests that prey survivorship in our

experiment may not be dependent on prey density, and that the

amount of refuge space may be the limiting factor. As stated

previously, this is assuming that encounter rates would increase

when refuge space became limiting. However, another possibility

is that we may have failed to reach any potential threshold for prey

density.

For oyster reefs, numerous factors can contribute to the

complexity of the habitat; along with shell volume, interstitial

space has been cited as a primary factor providing valuable prey

refuge habitat [47]. This space in-between structure is hypothe-

sized to provide refuge for prey as long as the size of the gap in the

structure is large enough for the prey to fit, but small enough so

that the predator cannot [31]. Bartholomew et al. [18]

hypothesized a ‘‘threshold’’ response in prey survivorship to

decreasing Sp/Pr. At very high Sp/Pr, prey survivorship should be

uniformly low. At very low Sp/Pr, prey survivorship should be

uniformly high (as long as prey can fit through the spaces in the

habitat) with a rapid transition between the two states. In theory,

Sp/Pr greater than 1 indicates that the predator can access all

space in the structure, while Sp/Pr less than 1 indicates refugia for

prey. However, it is not clear at what point predators may actually

access space, and it is likely that the actual value at which

predators are excluded from space may not be 1. One

methodological consideration is that a more accurate indicator

of refuge space might require ‘predator-free space’ measures that

also account for the available area within the structure itself (i.e.,

volume) and not just on the surface of a structure. This would tell

us more about the nature of the refuge space available to prey,

especially for 3-dimensional, heterogeneous structures like oyster

reefs.

While we compared Sp/Pr values greater than 1 (1.53, 1.33) to

values less than 1 (0.61, 0.53), we failed to detect significant

decreases in prey survivorship, although there was a trend of lower

survivorship with Sp/Pr . 1. It is possible that the differences

tested failed to compare a large enough gradient in ‘predator-free

space’ to detect significant effects; the oyster shell reefs we created

had Sp/Pr values just over 1 and we may have not reached the

‘‘threshold’’ in ‘predator-free space’. Again, it appears that the

type of habitat used to create structure, and potentially predator

and prey identity, may be critical to the outcome. For example,

seagrass provides complexity in the habitat but with movable

parts, and this obviously has different implications for predator

access than habitat composed of solid structure (e.g., oyster shell).

Furthermore, it is possible that regardless of the size of the

predator, their ability and likelihood of entering tight spaces may

be low and vary greatly by species.

The results of this study add to our understanding of the role of

habitat structure in mediating prey survivorship. Specifically, the

results corroborate theory that prey survivorship can increase as

structure is introduced and made more complex, but with

diminishing returns [18]. This general pattern of prey survivorship

was not significantly affected by changes in prey density or amount

of ‘predator-free space’. Future studies should aim to use

functionally different substrate types (e.g., substrate with different

physical properties) and combinations of predators and prey to

more accurately describe patterns across systems and better mimic

nature. Also, new designs should aim to create larger gradients in

‘predator-free space’ that incorporate within-structure metrics and

be on more ecologically relevant scales to bridge theory with

reality.
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