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Abstract

Deep demersal fisheries in Indonesia yielded close to 90,000 metric tons of snapper and

grouper in 2019, landed by a fleet of approximately 10,000 fishing boats. Prior to the present

study, information on these multi-species, dispersed, small- to medium-scale fisheries was

scarce, while reliable species-specific data on catch and effort were non-existent. This data-

deficiency made stock assessments and design of harvest control rules impossible. We

developed a new data collection method, the Crew Operated Data Recording System

(CODRS), to collect verifiable species- and length-composition data from catches across all

segments of the fleet. CODRS engaged crews of 579 fishing vessels to take pictures of

each fish in their catch, in combination with the deployment of a tracking device on their

boats. Furthermore, we also conducted a frame survey to map the fleet across the entire

Indonesian archipelago. Using more than 2 million CODRS images, we aimed to understand

the basic characteristics and challenges within the fishery. We updated life-history parame-

ters for the top 50 species in the fishery based on the maximum observed length-frequency

distribution of the catch (i.e., asymptotic length, size at maturity, optimum fishing length,

total mortality, and spawning potential ratio). Length-based stock assessments using the

updated life-history parameters showed high risks of overfishing for most of the major target

species, especially for snapper species with large maximum sizes. Our results indicated

that effective management and harvest strategies are urgently needed across Indonesia’s

eleven Fishery Management Areas to prevent the collapse of these important fisheries.

Introduction

The deep demersal fisheries in Indonesia are of international and local importance for liveli-

hood, economic output, and food security. They target snappers, groupers, grunts, emperors,

croakers, and over 100 co-occurring species at depths ranging between 30 and 350 meters [1].

The fisheries are also multi-gear, with droplines and bottom-set longlines as the most
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common, followed by traps and gillnets. In addition, some fishers use droplines and longlines

or traps and droplines concurrently. To ensure the sustainability of these disperse multi-spe-

cies and multi-gear fisheries, it is important to have reliable data. To date, however, these fish-

eries are data-poor, as there are no accurate catch or effort statistics, population dynamics of

target species are mostly unknown, and vessel dynamics remain elusive. Thus, a basic charac-

terization of the fisheries are still lacking.

Data collection and monitoring of these fisheries are challenging for many reasons. First,

fishing locations are spread out over the entire Indonesian Archipelago, which comprises parts

of two FAO Major Fishing Areas (57—Eastern Indian Ocean, and 71 –the Western and Cen-

tral Pacific Ocean), further subdivided by the Indonesia Ministry of Marine Affairs and Fisher-

ies into eleven Fisheries Management Areas (FMA). For stock assessments, these fisheries are

included in the commodity "ikan demersal" (demersal fish), which also includes a wide range

of other bottom-dwelling fish species [2]. Second, Indonesia’s seas and oceans feature some of

the most biodiverse marine ecosystems on earth, and this biodiversity is reflected in the species

diversity of landings: nearly 3,000 species have been recorded from Indonesia’s fish markets

[3]. Hence, species identification presents a special challenge for enumerators and observers.

Published accuracy rates for observers vary between 98% for groundfish in the North Pacific

and 80% for scientific observers working on a shark fishery in northern Australia [1,4]. We

believe that accuracy rates in Indonesia’s fisheries are much lower, due to the high species

diversity, lack of trained personnel, and ambiguous naming of fish species in Bahasa Indone-

sia. Kakap Merah (red snapper), for example, is used for at least six snappers of the genera Ete-
lis and Lutjanus [3]. Even in the scientific literature, misidentifications are common. For

instance, Lutjanus malabaricus is often misidentified as L. sanguineus (a species of the western

Indian Ocean) among scientists as well as fish exporters [5].

In addition to the logistical constraints of data collection in these fisheries, most of the ves-

sels are small (1–10 Gross Ton; GT) to medium (11–30 GT) scale, and they are dispersed over

vast and remote stretches of coastline. In such situations, conventional catch- and effort-based

methods suffer from problems with species and gear identification, limited access to landing

sites, difficulties with defining units of effort, and lack of resources for the implementation of

monitoring programs by qualified enumerators [6,7]. Accurate port sampling requires well-

trained enumerators to be present at the site and time of landing, often at odd hours [8]. Since

small-scale boats often land their catch in a very dispersed manner, outside of the main ports,

sufficient catch enumeration is almost impossible. Furthermore, for boats making longer fish-

ing trips, it is difficult to determine actual fishing locations at the time of landing unless the

boat has a tracking system on board and the enumerator can access the data. Logbooks are

unsuitable for small- to medium-scale fisheries since the logbook forms do not align well with

fishing practices which are highly dispersed with no central location where fish are landed and

recorded. Hence, in Indonesia, logbooks are often completed onshore by agents who take care

of the paperwork (e.g., location of fishing grounds, port of origin, number of crew) for the fish-

ing boats at ports [9]. Observer programs can only be implemented on larger vessels, which

represent a minor part of Indonesia’s demersal fleet, require technical expertise, and imple-

mentation can be unsafe due to poor working conditions [10]. In Indonesia, the standard

catch and effort monitoring system, which was designed in the mid-1970s, has not been suc-

cessful in capturing data with sufficient resolution for accurate stock assessment in the small-

to medium-scale deep demersal fisheries [8,11,12].

Advances in digital imaging have reduced limitations in the implementation of conven-

tional fishery-dependent data collection methods. For example, to complement or replace

observers on vessels, electronic monitoring (EM) systems utilize a photo or video recording

device, GPS tracker, and sensors attached to fishing gear to record catches [7]. Depending on
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the size and gear type of the fishing vessel, EM systems can be implemented in different ways

—from installing a video camera, to manually taking photographs of catches using a handheld

camera, or using sensors that record position, speed, or even hydraulic pressure to monitor

gear activity [13,14]. Scientists have also used vessel movement patterns from vessel monitor-

ing systems (VMS) to determine fishing locations [15]. However, especially for mixed and

multi-species fisheries, challenges in the accuracy and implementation of these systems still

remain [16]. Electronic monitoring systems have not yet demonstrated their feasibility in com-

plex multi-species tropical fisheries that span different gear types and vessel sizes. Especially

for small fishing vessels, a complex and expensive system would have limited applicability.

To address the need for reliable data in the deep demersal fisheries of Indonesia, we devel-

oped a data recording system for species and length composition of commercial catches that is

based on photographic records of the fish in the catch, resulting in verifiable data. This system,

referred to as the Crew-Operated Data Recording System (CODRS), combines simple hand-

operated cameras with GPS trackers to simultaneously record catch, time, and location.

CODRS is an iteration of EM that is tailored to a multi-gear and multi-species fishery. Thus,

the goal of this research is to estimate characteristics of the deep demersal fisheries using the

best-possible data as a foundation of more robust studies and policy analysis in the future.

Here, we (a) conducted a frame survey to estimate the total size of this fishery, (b) reviewed

CODRS implementation and compared the accuracy of CODRS against ledger receipts (catch

volumes from traders) to see how it differs from a more traditional fishery-dependent data col-

lection methodology, and (c) report stock assessment findings from CODRS. The CODRS

dataset included 2,881,519 individual length observations of fishes, which allowed us to set reli-

able life-history parameters for the top 50 species based on verifiable estimations of Lmax with

large sample sizes. We used CODRS data to characterize the fishery (Catch per Unit Effort

(CPUE) and total catch) and conduct preliminary length-based stock assessments by analyzing

the risk of overfishing of the top species using Spawning Potential Ratio (SPR) and trade

limits.

Methods

Frame survey

The research was done in partnership with The Nature Conservancy (TNC), who imple-

mented the Crew-Operated Data Recording System (CODRS). TNC has a Memorandum of

Understanding (MOU) with the Indonesian Ministry of Marine Affairs and Fisheries and has

completed all the paperwork to allow its operation in the country. Prior to deployment of

CODRS at each site, TNC research analysts obtained permission from local authorities to pro-

ceed with the data collection system. In April 2020, TNC handed over the CODRS monitoring

program to its affiliate Yayasan Konservasi Alam Nusantara (YKAN). A MOU between YKAN

and the Indonesian Ministry of Marine Affairs and Fisheries is still in the process of becoming

official, but was signed by all parties in August 2020. In all interactions with fishers and/or

other stakeholders (e.g., fish processing plant employees, local government officials), the

research team obtained oral consent from individuals to participate.

A frame survey is a census-based approach in which data is collected on all fishing gears

and vessels that are operating within a pre-defined area of interest [17]. In Indonesia, the areas

of interest are the 11 Fishery Management Areas (FMA, Wilayah Pengelolaan Perikanan), of

which there are eight in FAO area 71 (Western Central Pacific Ocean) and three in FAO area

57 (Eastern Indian Ocean). Indonesia’s system of FMAs are the geographic basis for stock

assessments and fisheries management, and therefore we used this system for structuring our

survey design. Unfortunately, there are no official data on the number of boats that participate
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in deep demersal fisheries. Indonesia does have a system to record fishing activity, but this sys-

tem cannot be used as a basis for a frame survey since it does not differentiate between fisher-

ies. The system functions by passing on aggregated data from one administrative level to the

next, which means that granularity on boats and gears is lost at higher administrative levels.

While implementing the CODRS program, we conducted a frame survey covering the entire

coastline of all major Indonesian islands and all 11 FMAs.

We implemented the frame survey by systematically expanding our network of stakeholders

through interviews with fishers, fish processing companies, and government officials. We used

our initial partner fishers and fish processing companies as a source of information on other

fishers and companies from other areas that operate in the deep demersal fisheries. We were

not able to standardize the interviewees because each fish processing company and govern-

mental agency has different structures and willingness to talk to ’outsiders’. For example, some

company owners were eager to share information but other owners were reluctant and instead

let their purchasing manager communicate with the research technician.

We used the following methods to list sites where presence of deep demersal fisheries were

likely. First, we asked the processing companies that produce snapper and grouper fillets and

their suppliers where they obtained their fish. Second, we asked fishing communities that were

involved in deep demersal fisheries or part of the CODRS program whether they knew of any

other important harbors or landing sites. A team of 30 field technicians spread across the

archipelago then followed up the leads with site visits to corroborate the presence of another

company or fishing community targeting the deep demersal species. For each confirmed case,

two senior technicians then visited the area to ensure assessment accuracy.

For each area, we also asked the opinion of government researchers (especially the Institute

for Marine Fisheries Research, Balai Riset Perikanan Laut, BRPL), fishing harbor authorities

(especially the Fisheries Surveillance Agency, Pengawasan Sumber Daya Kelautan dan Perika-
nan, PSDKP), and the agency responsible for issuance of catch certificates (the Fish Quaran-

tine and Inspection Agency, Badan Karantina Ikan, Pengendalian Mutu dan Keamanan Hasil
Perikanan). We asked fishing port authorities on the importance or size of the deep demersal

fisheries in their jurisdiction. We also asked the Fish Quarantine and Inspection Agency for a

list of companies in the deep demersal fisheries. The field technicians then called and visited

each company to determine if the company participates in the fisheries and the scale of the

operation. Finally, we used Google Earth (accessed 12 July 2019) to scan satellite imagery of

the Indonesia coastline to find concentrations of fishing vessels, after which we used a combi-

nation of online research and field visits to ground-truth whether the vessels were engaged in

the deep demersal fisheries. Though unconventional, this continuous effort since 2015 to

aggregate data on the scale and spread of the fishery, have covered most of Indonesian ports

and coastal communities. During the frame survey, data were collected on boat size, gear type,

the port of registration, licenses for specific FMAs, captain contacts, and other details, for all

fishing boats in the fleet. We also recorded whether boats participated during part of the year

in other fisheries ("seasonal"), or whether they fished for deep demersal fishes only ("dedi-

cated"). For example, the fishers from Galesong (South Sulawesi) target deep demersal fishes

for part of the year, and for the other part, they switch to collecting eggs of flying fish.

Following practices by fisheries managers in Indonesia, we distinguished four boat size cat-

egories, including nano (<5 GT), small (5 - <10 GT), medium (10–30 GT), and large (>30

GT). We also distinguished four gear types: vertical drop lines, bottom-set longlines, deep-

water gillnets, and traps. A fifth category of gear classification was needed to record operations

using "mixed gear" when two or more of the gear types were used on the same trip and catches

were not separated. To characterize the fisheries, we analyzed differences in catches per fleet

segment (the combination of size category and fishing gear).
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This frame survey included information for each fishing boat in the fleet regarding boat

size, gear type, the port of registration, and main fishing locations. Origins of vessels were not

always overlapping with their fishing locations. Information on the main fishing location for

individual vessels was updated when vessels moved to other fishing locations.

Catch composition survey

Between 2015 and March 2020, we implemented a catch composition monitoring program

using CODRS. We started in FMA 573, and by the end of 2019, we had expanded the CODRS

program to cover all of Indonesia’s eleven FMAs (Fig 1). The bathymetry of FMAs 573, 713,

714, 715, 716, and 717 is characterized by mostly narrow coastal shelves, seamounts, and deep

trenches. The bathymetry of FMAs 711, 712, and 718 is mostly comprised of shallow waters

over continental shelves (30 to 100 m depth). FMAs 571 and 572 have a mix of shallower conti-

nental shelf habitat and deeper slopes and drop-offs in the Indian Ocean and Malacca Strait,

around the island of Sumatra.

The CODRS method is comparable to a logbook because it is based on data collection by

fishers. We aimed to work with about 5% of the fleet operating on deep demersal fisheries,

which amounts to about 40 vessels per FMA. We selected fishers based on their representative-

ness for the gears and boat size categories that operate in that FMA, with at least one, and

where possible, multiple CODRS vessels within the same fleet segment. Since data from the

frame survey became available during implementation of CODRS, we could not always ensure

that selection of CODRS was completely representative for the fleet operating in the FMA, and

we frequently had to make adjustments by focusing on recruiting under-represented fleets

based on new insights from the frame survey.

As an incentive for collaboration, we provided captains with monthly compensation, scaled

to their vessel size. As part of the selection process, we informed fishers of the data confidenti-

ality—only pooled data are shared with other parties, and locations are only accessible by fam-

ily members and boat owners. To ensure data quality, we terminated the contract with

captains that violated the best practices (i.e., did not take complete photographs of the catch,

took blurry or angled photographs).

We equipped CODRS vessels with digital pocket cameras and a measuring board for size

reference, and we asked the fishers to take a picture of every fish they caught. With the excep-

tion of the crew of nano vessels, who often took pictures upon landing, crew of all other fishing

Fig 1. Map of the eleven Fishery Management Areas (FMA) within Indonesia. Black lines denote FMA boundaries.

Dots denote fishing villages or ports where we deployed the Crew Operated Data Recording System (CODRS).

https://doi.org/10.1371/journal.pone.0263646.g001
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vessels took pictures while at sea and were instructed to take pictures where they caught the

fish. However, the pictures were often taken when transferring the catch in the hold. The fish-

ers placed each fish on a measuring board for size reference. The acrylic measuring board had

1-cm grid lines across the width of the board; we color-coded every 10 cm mark to aid in data

analysis of photographs. We installed a backstop at the 0-cm mark where the mouth of the fish

should touch to decrease measurement error. In addition, we deployed a low-cost GPS track-

ing device (Spot Trace) to record positions, and we trained the captains to change batteries

and take care of these devices. We set the devices to record a position every hour when moving.

Spot Trace could record higher frequencies for recording of positions, but this feature reduced

the battery life too much. We trained and assigned one technician per 15 vessels participating

in the program. The technicians maintained relationships with captains and crew, and they

received the digital media with the pictures from the captains after each trip. Research techni-

cians provided feedback on the data quality to the captains after each fishing trip, comparing

the number of pictures with a rough estimate of the volume of the catch. We also trained tech-

nicians in fish identification using published guides, frozen specimens, and photographs, so

they could identify fish species, after which they measured length and input the data into

spreadsheets (Fig 2).

Data collection for each trip began when the boat leaves port with the GPS recording vessel

location every hour while it is steaming out. At the end of each fishing trip, which varied

between a single day and two months depending on vessel size, captains transfer the memory

card containing the photographs of their catch to the technicians onshore. Technicians then

identified the species of each fish in the images and determined each specimen’s total length

Fig 2. Crew-Operated Data Recording System (CODRS) workflow. The system is a cycle that begins with

recruitment and training of captains and analysts (orange boxes). Data is then collected at sea (blue box), and

transferred to analysts for processing (purple boxes).

https://doi.org/10.1371/journal.pone.0263646.g002
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(TL; cm). After the first round of image processing by a field technician, experienced senior

technicians reviewed the species identification and length measurement data for accuracy

before adding it to the database. For any images of specimens exceeding the previous largest

fish of that species in the database, a senior fisheries scientist further verified the image before

accepting it as a new estimate for maximum length (Lmax). Based on the quality of the photo-

graphs, technicians also provided feedback to the fishers to improve data quality on subse-

quent trips. Sets of images from fishing trips with unacceptable low-quality photographs or

only representing a small part of a multi-day fishing trip were not processed and not included

in the dataset.

Technicians used sales ledgers (receipts) of the landing for quality control of CODRS data,

assessing whether the CODRS images accounted for the entire catch. Technicians flagged

catches when they were deemed incomplete. Datasets with photographs that represented

>90% of catch receipts, 30% to 90% of catch receipts, and<30% of catch receipt were flagged

as complete, incomplete, and biased, respectively. Only complete datasets were used for CPUE

calculation and analyses, however, complete and incomplete datasets were used for the length-

based stock assessment. Biased datasets were rejected and were not used for analysis.

After a dataset passed all reviews, and any necessary corrections were made, the dataset was

uploaded to an online database. Vessel owners, captains, and researchers have access to the

contents of the database, each with different viewing privileges. For instance, captains were not

able to see the fishing locations and corresponding catches of other captains, but researchers

were able to access all information except identifying characteristics such as boat/captain

name. Fish traders who own the vessels or fronted the operational fishing costs could be given

access to selected information on their fleet.

To validate CODRS data in more detail, we compared CODRS data with catch weights

from the sales ledgers (receipts). We collected receipts from fish traders that purchased fish

from CODRS vessels between August and November 2017. These sales receipts were assumed

to represent a reliable estimate of the total weight of an individual catch (from a single trip,

and including all species) that is independent of CODRS data [18]. We compared these data to

catch estimates (per trip) from the CODRS system using paired t-tests and linear regression.

Data were inspected for normality and homogeneity of variance using a Shapiro-Wilks test.

Fishery characteristics

To determine the fish body weight (kg) from TL data, allometric length-weight relationships

were obtained from the literature to convert fish sizes taken from the CODRS images (S1

Table). When no values were found for a species, we used morphologically similar species to

obtain the length-weight coefficients. To determine fishing locations, we filtered GPS data

based on speed (<5 km/h) and depth (50-500m). We assumed that boats traveling less than 5

km/h were always fishing, which may not always be the case, thus potentially causing a slight

overestimation. Boats that might be fishing while drifting with the engines off would still fall

into this category as long as their drift speed was less than 5 km/h.

To estimate the yearly number of fishing days, we categorized each day for which a CODRS

vessel took a picture as a "fishing day", and we counted the number of fishing days for each

CODRS vessel. We then calculated average fishing days in a year for each fleet segment (the

combination of size category and fishing gear) (S2 Table). For each fleet segment, we assumed

that "seasonal" fishers allocate half of the fishing days of "dedicated" fishers to deep-water

demersal fisheries, and the other half to the other fisheries they participate in. Dedicated fish-

ing boats on average were fishing actively between 200 and 250 days per year.
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Using Catch per Unit Effort (CPUE) to estimate total catch

We calculated the CPUE in order to estimate the total catch of the entire fleet of the fishery.

We defined CPUE as catch weight (kg) per unit vessel size (GT) per fishing day. Then we cal-

culated the annual average CPUE for each fleet segment per FMA. To obtain the total annual

catch for each fleet segment, we multiplied average CPUE with the estimated number of fish-

ing days per year for that fleet segment and with the total gross tonnage of boats present in that

fleet segment.

To calculate the total catch for each species per FMA, we multiplied CPUE estimates, the

average fishing days in a year, the total gross tonnage in each fleet segment, and the species

composition ratio (per fleet segment, per FMA). Total gross tonnage for each fleet segment

was derived from frame survey results by summing vessel gross tonnage per fleet category per

FMA (S3 Table).

Life history parameters

Unreliable results from previous studies create a data gap for life history parameter values in

Indonesia’s deep demersal fishery. Asymptotic length (Linf) is a key parameter and starting

point in length-based assessments. In many recently published growth studies, Linf for numer-

ous species has been estimated by using age-length data to fit the von Bertalanffy growth equa-

tion (e.g., [19,20]). Estimation of the von Bertalanffy parameters, however, varies depending

on the inputted age range [21]. Thus, many of these studies may be biased due to small sample

sizes, samples from highly selective gear, aging error, or sourcing data from a single element of

the fleet at a specific moment in time or from a specific location on the fishing grounds

[22,23]. In fished populations, fast-growing young fish and slow-growing old fish are fre-

quently over-represented in samples, leading to an underestimation of Linf [23]. Additionally,

in heavily fished ecosystems, researchers seldom have access to the rare surviving specimen at

maximum length. These biases can cause underestimation of Linf, which poses a problem in

the accuracy of stock assessments. An alternative approach to estimate life-history parameters

is to estimate Lmax as the largest specimen from a large sample of fish and use it to calculate

other life-history parameter values based on known relationships between the parameters [24].

As a starting point for our length-based approach, we estimated the maximum attainable

length (Lmax) for each species in the local population as the size of the largest recorded speci-

men in the catch (Lx-CODRS). From Lmax, we calculated Linf, Lmat, and Lopt (Table 1).

To further verify the updated life history parameters, we compared Lmat values from our

calculation with maturity studies that determined the length at which 50% of the population

matures (of the top 15 species in the catch). We chose Lmat estimates as a point of comparison

because biological studies on maturation have been shown to be more robust than studies on

Table 1. Life history parameters used in this study for length-based stock assessments, including their definitions, calculation notes, and relevant reference.

Parameter Definition Calculation Reference

Lmax The maximum attainable length for each species in the local population Lmax = the size of the largest recorded specimen in the catch (Lx-

CODRS)

Linf The asymptotic length of the Von Bertalanffy growth equation For all families, Linf = 0.9 � Lmax [25]

Lmat The length where 50% of the population gets mature for the first time For Lutjanidae, Lmat = 0.59 � Linf [26]

For Epinephelidae, Lmat = 0.46 � Linf [26]

For all other families, we used Lmat = 0.5 � Linf [27]

Lopt The length where an age group achieves maximum biomass in an unfished

situation

For all families, Lopt = 1.33 � Lmat [28]

https://doi.org/10.1371/journal.pone.0263646.t001

PLOS ONE Indonesia’s demersal fisheries length-based stock assessment

PLOS ONE | https://doi.org/10.1371/journal.pone.0263646 February 25, 2022 8 / 28

https://doi.org/10.1371/journal.pone.0263646.t001
https://doi.org/10.1371/journal.pone.0263646


Linf [29]. We excluded studies that published values for length at first maturity. We compared

Lmat values from areas with similar latitudes (15o S– 15o N); when not available, we included

studies from other latitudes [30].

Estimating SPR and defining additional length-based indicators

We defined spawning potential ratio (SPR) [31], as the current spawning stock biomass as a

fraction of the spawning stock biomass in an unfished (pristine) situation [26]. Using length

data to calculate SPR has been shown to be a viable approach for stock assessments [32,33].

We calculated SPR on a per-recruit basis from life-history parameters of total mortality (Z),

fishing mortality (F), growth (K), and Linf. The instantaneous total mortality (Z) was estimated

from catch length-frequency distribution with the equilibrium Beverton-Holt estimator, using

Ehrhardt and Ault (1992) bias-correction, implemented through the function bheq2 of the R
Fishmethods package [34,35].

As input for the procedure above, we used the length-frequency distribution of the total

yearly catch of each species (all gears and all boat size categories combined). To obtain this

length-frequency, we calculated an average length-frequency distribution per fleet segment,

and we then combined length-frequency data with information on the fleet composition from

the frame survey to estimate a length-frequency distribution of the total catch (all gears and

boat size categories combined) over the most recent 365 days (March 23, 2019 –March 22,

2020).

The natural rate of mortality (M) was estimated using the Froese and Pauly (2000) empiri-

cal formula with Linf as an estimated above, and ambient water temperature at fishing depth

estimated at approximately 20 degrees Celsius [36]. With an asymptotic length for a snapper of

about 80 cm, this resulted in an M of approximately 0.4, which aligned with other reported val-

ues from the literature [27]. The fishing mortality (F) was the difference between Z and M. We

estimated the growth parameter (K) from Lopt and M and Linf, using the equation K = M�Lopt/

3�(Linf-Lopt) [24].

Length-based stock assessments

In data-poor fisheries, length-based assessment methods are a viable way to conduct stock

assessments to determine fishery status and set management benchmarks [24,32,33,37,38].

Spawning potential ratio (SPR) as a reference point is not as data-demanding as other method-

ologies and can be useful to inform policy regarding the stock status. Decreasing SPR values

indicates stock declines [39]. Froese et al. (2016) considered total population biomass (B) of

50% the pristine population biomass (Bo) to be the lower limit reference point for stock size,

minimizing the impact of fishing [40]. Using SPR and B/Bo estimates from our data set, the

Froese et al. lower limit reference point correlates with an SPR of approximately 40%, not far

from but slightly more conservative than the Wallace and Fletcher reference point [39,40].

Therefore, we chose an SPR of 40% as our reference point for "low risk" of stock collapse. After

similar comparisons, we chose to consider SPR between 25% and 40% to represent a "medium

risk" situation. We consider risk levels to be "high" at SPR values below 25%.

In addition to SPR, we used sizes of fish in the catch as an indicator of sustainability. An

ideal target for catches is 0% immature fish [38], but a target of 10% or less is considered a rea-

sonable indicator for sustainable harvesting of fish stocks [41,42]. Zhang et al. consider 20%

immature fish in the catch as an indicator for a fishery at risk in their approach to an ecosys-

tem-based fisheries assessment [43]. Results from a meta-analysis of many fisheries showed

stock status over a range of stocks to fall below precautionary limits at 30% or more immature

fish in the catch [42]. The fishery was considered at very great risk of collapse when more than
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50% of the fish in the catch are immature and effort was high [40]. Thus, we considered risk

levels to be "low" at levels of 10% or less immature fish in the catch, "medium" between 10%

and 30%, and to be "high" at levels above 30% of immature fish in the catch.

We used the current exploitation level expressed as the percentage of fish in the catch below

the optimum harvest size (Lopt) as an indicator for fisheries status. This was the reciprocal

value of the percentage of large mature fish above the optimum harvest size. We considered a

proportion of 65% of the fish (i.e., the vast majority in numbers) in the catch below the opti-

mum harvest size as an indicator for growth overfishing. We also considered a majority in the

catch around or above the optimum harvest size as an indicator for minimizing the impact of

fishing [40]. This indicator was achieved when less than 50% of the fish are below the optimum

harvest size. We considered risk levels to be "low" at exploitation levels below 50%, "medium"

between 50% and 65%, and "high" at levels of 65% or more.

We considered mega-spawners to be fish larger than 1.1 times the optimum harvest size

(Lopt) [38]. We considered a proportion of 30% or more "mega-spawners" in the catch to be a

sign of a healthy population [38]. In contrast, lower proportions of mega-spawners led to con-

cerns; proportions below 20% indicated a great risk to the fishery. Thus, we considered risk

levels to be "low" at mega-spawner levels of 30% or more, "medium" between 20% and 30%,

and "high" at levels below 20%.

We also used a static length indicator based on trade limit (minimum size accepted by fish

traders for each species across all FMAs) and the size at maturity as an indicator of possible tar-

geting of juveniles or for more sustainable targeting of mature fish that have spawned at least

once. A trade limit that is well below the size at maturity indicates that the market generates

demand for juvenile fish, exposing a larger proportion of the population to fishing pressure,

and thereby making the population more vulnerable to over-fishing. We considered risk levels

to be low when the trade limit > 1.1 × Lmat; medium when the trade limit� 0.9 × Lmat; high

when the trade limit < 0.9 × Lmat.

Results

Indonesian deep demersal fishing fleet

Frame survey results showed a wide range of vessel sizes in the Indonesian deep demersal fish-

eries. Fishing boat sizes ranged from "nano" sized canoes of less than 1 GT, up to the larger ves-

sels measuring close to 100 GT. The total deep demersal fishing fleet in Indonesia included an

estimated 9,982 fishing boats (Table 2A), representing a total of more than 50,000 gross tons

(GT) of combined vessel volume (Table 2B).

We worked with 579 captains between October 2015 and March 2020 to implement the

Crew Operated Data Recording System (CODRS) in Indonesia. These captains used drop lines

(315 captains), bottom longlines (115 captains), mixgears (129 captains), traps (13 captains),

and gillnet (7 captains). Through CODRS implementation, we obtained data from 8,914 fish-

ing trips, which yielded 2,881,519 individual fish or 5,366.110 tons of catch. Vessels ranged

from one to 115 GT in size. Recruitment of captains from the overall fleet into the CODRS

program was not precisely proportional to the composition of the fleet in terms of vessel size,

gear type, and the FMA where the boat typically operates. However, the fleet survey results

allowed us to extrapolate catches from CODRS data to represent catches from the actual fleet.

CODRS implementation and validation

Initial uptake to CODRS by fishers was met with hesitation and skepticism, both in being able

to handle the additional workload and in ensuring data confidentiality. Establishing partner-

ship with fish traders who provided the operational fishing cost helped leverage the CODRS by
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having the fish traders to be the ’champions’ of the system. Fish traders also helped us promote

the system to the captains and crew. Subsequent uptake became easier as more and more cap-

tains signed up. Having an initial core group of willing captains paved the way to spread the

system to other locations. We relied on captains or crew to share information with other pro-

spective CODRS participants in the fishery. However, in one location, a fishing cooperative

deliberately withheld information on other fishing cooperatives in the same fishery due to a

long-standing rivalry. There were also technical challenges during the implementation of the

system. For example, we needed to create smaller measuring boards to fit nano boats < 5 GT.

We also added nets on the measuring board surface to prevent the slippage of fish specimens

at sea. Some fishers were taking the batteries out of the GPS tracking units for their electronic

appliances at home. In such situations, research technicians were critical in enforcing the rules

of participation.

Captains and crews usually required one month of trial before they were familiar enough

with the equipment and workflow before beginning data collection. During this period,

research technicians were troubleshooting a variety of questions (e.g., issues with buttons on

the camera) and gave examples on how to take proper photographs. Captains and crew were

especially receptive to the GPS trackers as they believed it increased the safety of their vessel at

sea. In fact, research technicians used the GPS tracker data twice during the study period to

help locate vessels that had drifted at sea due to failed engines.

Anecdotal reports suggested that fishers highly benefited by the monetary compensation.

Thus, having the contract contingent upon data quality helped research technicians to enforce

the data collection best practices. Without the monetary compensation., given the workload,

Table 2. (a) Summary of the deep demersal fishing fleet in Indonesia. (b) Combined total vessel volume (gross tonnage, GT) in the deep demersal fishing fleet in Indo-

nesia. Data are by fleet segment (gear type, boat size, dedicated, seasonal) for all eleven Fishery Management Areas (FMAs) combined.

Size Category Fleet activity (a) Number of Boats

Dropline Longline Gillnet Trap Mixgears Total (GT)

Nano Dedicated 3085 533 0 63 327 4008

Nano Seasonal 2169 316 0 20 678 3183

Small Dedicated 500 104 16 353 294 1267

Small Seasonal 402 31 2 0 5 440

Medium Dedicated 165 259 18 262 102 806

Medium Seasonal 92 8 6 0 0 106

Large Dedicated 22 86 62 2 0 172

Large Seasonal 0 0 0 0 0 0

Total 6435 1337 104 700 1406 9982

Size Category Fleet Activity (b) Total Gross Tonnage

Dropline Longline Gillnet Trap Mixgears Total (GT)

Nano Dedicated 3653 804 0 203 947 5607

Nano Seasonal 2959 356 0 27 915 4258

Small Dedicated 3370 786 95 2195 1811 8257

Small Seasonal 3340 220 14 0 32 3606

Medium Dedicated 2846 5572 368 4988 1528 15302

Medium Seasonal 1616 134 97 0 0 1847

Large Dedicated 1325 5490 4685 65 0 11565

Large Seasonal 0 0 0 0 0 0

Total 19110 13362 5259 7478 5233 50442

https://doi.org/10.1371/journal.pone.0263646.t002
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we suspect that compliance and data quality would be lower. Out of the 579 CODRS contracts,

we terminated 60 due to poor data quality or by request from the captain.

We used total weights from catch receipts (ledgers) as our control dataset to compare with

CODRS results. In an experiment early on in this study, we obtained receipts from 41 captains

with boats <30 GT, and from 3 captains with boats >30 GT. Because of the small sample size

for large boats >30 GT, we did not use these data in our analysis. For boats <30 GT, we found

significantly greater total catch weight per trip in CODRS than data collected from receipts

(p< 0.001, t = 5.5243, R2 = 0.657). Our CODRS dataset also recorded more fish per catch than

the receipts, and this became more pronounced as the catches got larger (Fig 3).

The annual cost to implement CODRS was approximately $3,600- $6,300 per vessel

(depending on vessel size). The CODRS annual cost is substantially more expensive than that

of logbooks ($42) but not observers ($2,700 per observer trip). CODRS is also a much less elab-

orate EM system than others, such as video camera monitoring ($11,200 to install per vessel

and $4,481 annually per vessel) [15]. Cost of CODRS implementation covers hardware (cam-

era, measuring board, training booklet, training posters, batteries, Spot Trace GPS tracker,

Fig 3. Total catch weight comparison between receipts and CODRS (Crew-Operated Data Recording System).

The black line denotes 1:1 ratio between receipts and CODRS total weight; the blue line denotes fitted linear regression

with 95% confidence interval in grey. R2 = 0.657; P-value and t value corresponds to the paired t-test results.

https://doi.org/10.1371/journal.pone.0263646.g003
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memory card), payment to captains, Spot Trace GPS tracker annual subscription, and Net-

work Area Storage (storage system for CODRS data).

Catch characteristics

The deep demersal fisheries exploit more than 100 species of fish, but the top 50 species in the

CODRS dataset together represent over 95% of all specimens recorded. Sample sizes ranging

from 36,500 to 445,500 images were obtained for each of the top 15 species by weight, which

together represented more than 75% of all recorded fish. The five most abundant species in

CODRS samples represented well over 54% of all records. This group of five species included

three snappers (Lutjanus malabaricus, Pristipomoides multidens and Pristipomoides typus), one

small grouper (Epinephelus areolatus), and one croaker (Atrobucca brevis) (Table 3). One

deep-water snapper species has not yet been scientifically described, so is noted here as ‘Etelis
sp.’

To get a more thorough understanding of the catch characteristics of this fishery, we calcu-

lated the total catch by scaling up catches recorded by CODRS to represent the total fleet. The

total catches showed unequal exploitation between gear types, FMAs, and vessel sizes. The

total catch in 2019 was close to 90,000 tons, with approximately 47,000 tons caught by drop

lines, more than 20,000 tons caught by bottom-set longlines, and 24,000 tons caught by a com-

bination of gillnets, traps, and mixgears, respectively (S4 Table). The largest catches in 2019

(over 10,000 tons) were produced in FMAs 711 (12,458 tons), 712 (20,462 tons), 713 (10,274

tons), and 718 (12,692 tons). In other FMAs, catches ranged between 2,000 and 8,500 tons per

year. After accounting for fleet composition, the top 20 species by volume represented close to

78% of the total catch, with more than 60% of the catch made up by eight species only, includ-

ing seven large snappers and one large grouper (Table 4). Roughly two thirds of the total catch

in 2019 was produced by vessels smaller than 10 GT.

Updating maximum length and other life-history parameters

Using CODRS images with sample sizes of at least 7,000 specimens per species, life-history

parameters could be reliably updated for the top 50 species in CODRS dataset (Table 5), based

Table 3. Top 15 species from CODRS (Crew Operated Data Recording System) ranked by weight (kg) and frequency from the deep demersal fisheries in Indonesia

from across all fleet segments and FMAs between 2015 and 2020.

Species Weight (kg) % from total weight n % from n total

Lutjanus malabaricus 1,086,799 32.87 445,507 22.86

Pristipomoides multidens 628,551 19.01 336,004 17.24

Atrobucca brevis 228,964 6.92 301,169 15.46

Pristipomoides typus 218,707 6.61 174,598 8.96

Aphareus rutilans 177,964 5.38 64,105 3.29

Etelis sp. 159,074 4.81 42,779 2.20

Epinephelus coioides 135,627 4.10 31,201 1.60

Lutjanus erythropterus 127,950 3.87 100,635 5.16

Lethrinus laticaudis 104,999 3.18 59,888 3.07

Lutjanus sebae 94,438 2.86 48,374 2.48

Pristipomoides filamentosus 87,824 2.66 61,473 3.15

Epinephelus areolatus 77,913 2.36 192,951 9.90

Paracaesio kusakarii 65,677 1.99 37,296 1.91

Etelis radiosus 57,316 1.73 20,219 1.04

Etelis coruscans 54,935 1.66 32,416 1.66

https://doi.org/10.1371/journal.pone.0263646.t003
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on the maximum observed length in the catch (Lx-CODRS). For several species, CODRS images

provided values for maximum attainable lengths in Indonesian waters larger than previously

reported. By treating Lmax and Linf as biological parameters instead of curve fitting parameters,

we could estimate Linf directly from Lmax [28]. This method was supported by length-fre-

quency distributions of each species, which demonstrated that specimens from Lx-CODRS used

as Lmax did not reflect anomalous fish (Fig 4). Photographs of specimen at Lx-CODRS form veri-

fiable evidence of the lengths that these species can attain. Estimates of Linf were then used to

obtain estimates for Lmat and Lopt using life history invariants. In addition, our estimates for

Lmat from life-history invariants result in values within the range of published values, with a

few exceptions (Fig 5).

Length-based stock assessments

By utilizing SPR values and relative abundance by size-group (trade limit, immature, optimum

length, mega-spawner), we characterized the risk levels of the 20 most abundant species in the

fishery. Length-based stock assessments by FMA showed dangerously low SPR values and a

high risk of overfishing in most FMAs for most target species in this fishery (S5 Table). This

risk was pronounced for snapper species with large maximum size (Tables 6 and S6). There

were differences in SPR values between FMA, although a high risk of overfishing was apparent

for most major species in all FMAs. A yearly comparison of SPR indicated that FMA 573 (with

major activity in the Timor Sea) showed signs of improvement, whereas FMA 712 (Java Sea)

showed severe deterioration (Table 7). Such patterns of deterioration were evident in almost

all FMAs in Indonesia (S7 Table).

Table 4. Total catch by volume (tons) of the top 20 species in the Indonesian deep demersal fisheries in 2019. Total catch was estimated based on CPUE, species distri-

bution by fleet segment, average effort per fleet segment, and total vessel tonnage per FMA.

Species Total Catch per FMA (tons) Total catch (tons)

571 572 573 711 712 713 714 715 716 717 718

Lutjanus malabaricus 50 6 558 3552 7350 1092 75 161 33 59 4269 17205

Pristipomoides multidens 354 168 1589 2002 5525 957 271 495 76 852 886 13175

Aphareus rutilans 0 521 486 0 33 2026 313 3068 100 653 283 7483

Etelis radiosus 0 92 552 3 0 275 29 300 1657 722 13 3643

Epinephelus coioides 927 32 56 923 1095 134 83 12 76 56 219 3613

Pristipomoides typus 8 283 546 154 827 364 43 32 0 71 119 2447

Etelis sp. 0 257 74 0 0 548 271 673 180 305 99 2407

Epinephelus areolatus 88 69 77 993 725 234 24 31 8 52 55 2356

Atrobucca brevis 0 0 0 0 0 0 0 0 0 0 2091 2091

Diagramma pictum 1 11 48 1041 367 268 64 8 11 0 0 1819

Etelis coruscans 0 213 124 0 0 83 55 492 418 370 19 1774

Caranx sexfasciatus 71 147 49 37 122 561 242 185 167 105 62 1748

Plectropomus maculatus 0 2 0 1204 391 27 9 13 7 0 41 1694

Aprion virescens 0 663 20 47 142 104 151 168 122 12 110 1539

Lutjanus erythropterus 0 4 72 103 942 98 2 216 5 0 90 1532

Pristipomoides filamentosus 1 62 196 4 9 156 52 756 44 51 21 1352

Lutjanus sebae 1 0 72 326 296 221 115 15 4 0 276 1326

Lethrinus olivaceus 0 309 76 50 129 147 250 43 99 76 146 1325

Caranx tille 3 15 135 0 20 221 135 64 0 441 190 1224

Caranx ignobilis 10 391 26 0 51 130 187 26 309 8 81 1219

https://doi.org/10.1371/journal.pone.0263646.t004
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Table 5. Length-based life history parameters Lmat, Lopt, Linf, and Lmax for the top 50 most abundant species in CODRS dataset from the deep demersal fisheries in

Indonesia. Lmax values were derived from Lx-CODRS.

Fish Species Lmat (cm) Lopt (cm) Linf (cm) Lmax (cm)

Lutjanus malabaricus 50 66 85 94

Pristipomoides multidens 48 64 82 91

Atrobucca brevis 34 45 68 75

Epinephelus areolatus 22 29 48 53

Pristipomoides typus 45 60 76 85

Lutjanus erythropterus 37 49 63 70

Lutjanus vitta 23 31 39 43

Aphareus rutilans 64 85 108 120

Pristipomoides filamentosus 48 64 81 90

Lethrinus laticaudis 28 37 57 63

Lutjanus sebae 51 68 86 96

Etelis sp. 66 88 112 125

Paracaesio kusakarii 45 60 76 85

Pristipomoides sieboldii 30 40 51 57

Diagramma pictum 36 48 73 81

Lutjanus timorensis 34 45 58 65

Etelis coruscans 64 85 108 120

Epinephelus coioides 49 65 107 119

Pinjalo lewisi 31 41 52 58

Gymnocranius grandoculis 34 45 68 76

Lethrinus lentjan 25 33 50 55

Carangoides chrysophrys 36 48 72 80

Etelis radiosus 61 81 104 115

Pinjalo pinjalo 41 55 70 78

Pomadasys kaakan 29 39 58 64

Lutjanus johnii 48 64 81 90

Caranx sexfasciatus 40 53 81 90

Aprion virescens 57 76 96 107

Plectropomus maculatus 35 47 76 84

Cephalopholis sonnerati 25 33 54 60

Paracaesio stonei 37 49 63 70

Caranx bucculentus 34 45 68 75

Wattsia mossambica 27 36 54 60

Epinephelus bleekeri 33 44 71 79

Lutjanus argentimaculatus 51 68 86 95

Lethrinus olivaceus 44 59 87 97

Lutjanus russelli 28 37 48 53

Lutjanus gibbus 29 39 49 54

Seriola rivoliana 60 80 119 132

Carangoides coeruleopinnatus 31 41 62 69

Lutjanus boutton 18 24 30 33

Plectropomus leopardus 31 41 68 76

Erythrocles schlegelii 40 53 81 90

Lutjanus bohar 47 63 79 88

Diagramma labiosum 38 51 75 83

Caranx ignobilis 61 81 122 135

(Continued)
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Table 5. (Continued)

Fish Species Lmat (cm) Lopt (cm) Linf (cm) Lmax (cm)

Paracaesio gonzalesi 29 39 49 54

Caranx tille 38 51 77 86

Variola albimarginata 20 27 44 49

Elagatis bipinnulata 49 65 98 109

https://doi.org/10.1371/journal.pone.0263646.t005

Fig 4. Length-frequency distributions of the six most frequently caught species in the Indonesian deep demersal

fisheries (Lutjanus malabaricus, Prisipomoides multidens, Pristipomoides typus, Epinephelus areolatus, Lutjanus
erythropterus, and Atrobucca brevis).

https://doi.org/10.1371/journal.pone.0263646.g004
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Discussion

CODRS as a data recording and electronic monitoring system

CODRS data recorded more fish by weight than receipts; however, the variance around the 1:1

ratio was substantial. Receipts that indicated a total catch in the 10–500 kg range were associ-

ated with CODRS data indicating a catch of up to 1.5 metric tons. In the 500–2,500 kg per trip

category, CODRS appeared to indicate a total catch that was around 50% lower than the fig-

ures indicated on the receipts. However, in the largest catches (> 2,500 kg) there was a high

correlation between CODRS and the receipts.

Weight discrepancies could be explained by the generalization of length-weight relation-

ships, potential bias in the photographs, fish being used as bait, eaten on-board, or sold directly

to individual buyers (without any receipts) after being photographed and included in the

CODRS data set. Also, there may have been some "cheating" by buyers, rigging weighing scales

to record lower weights. Because of the prevalence of such activities, conducting the data col-

lection onboard becomes crucial in getting the best catch estimates. Despite the uncertainty

regarding the accuracy, CODRS is useful in the detailed effort data it records for each fishing

Fig 5. Length at maturity (Lmat; cm) values for the top 15 species as well as Etelis sp.

https://doi.org/10.1371/journal.pone.0263646.g005
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trip. Using the CODRS dataset, researchers can match GPS coordinate dates from the tracking

device to the date on catch photographs, verifying time, and general location of catches. These

parameters help to standardize CPUE [44]. Researchers can also filter GPS coordinates to map

specific fishing areas, determine the spatial distribution of fish species, analyze vessel dynam-

ics, and determine management implications of different movement patterns [45–48].

Table 6. Risk levels of the 20 most abundant species in FMA 573 and FMA 712. Risk levels were determined using SPR values and relative abundance by size-group

(trade limit, immature, optimum length, mega-spawner).

FMA Species Trade limit %< Lmat % < Lopt % > Linf % SPR

573 Pristipomoides multidens high high high high high

573 Pristipomoides typus high high high high high

573 Lutjanus malabaricus high high high high high

573 Epinephelus areolatus low low low low medium

573 Pristipomoides sieboldii medium low high high high

573 Pristipomoides filamentosus high high high high high

573 Lutjanus erythropterus high low low low medium

573 Paracaesio kusakarii high medium medium medium medium

573 Lutjanus timorensis medium medium high high high

573 Etelis coruscans high high high high high

573 Pinjalo lewisi medium medium high high high

573 Etelis sp. high high high high high

573 Lutjanus sebae high high high high high

573 Lutjanus vitta low low high high high

573 Aphareus rutilans high medium medium high high

573 Gymnocranius grandoculis high low low low low

573 Etelis radiosus high high high high high

573 Epinephelus morrhua high low high high high

573 Parascolopsis eriomma low low low low low

573 Glaucosoma buergeri medium low low low low

712 Lutjanus malabaricus high high high high high

712 Epinephelus areolatus low low low low medium

712 Lutjanus erythropterus high high high high high

712 Pristipomoides multidens high high high high high

712 Lutjanus vitta low high high high high

712 Diagramma pictum medium high high high medium

712 Pinjalo pinjalo high high high high high

712 Plectropomus maculatus medium medium low low low

712 Epinephelus coioides medium medium high medium medium

712 Carangoides chrysophrys low high high high high

712 Lutjanus sebae high high high high high

712 Lethrinus lentjan medium low low low medium

712 Pristipomoides typus high high high high high

712 Gymnocranius grandoculis high high high high high

712 Lutjanus johnii high high high high high

712 Epinephelus bleekeri high low low low low

712 Carangoides coeruleopinnatus Unknown Unknown Unknown Unknown Unknown

712 Carangoides gymnostethus medium low low high high

712 Lutjanus russelli medium low medium high high

712 Rachycentron canadum medium medium high high high

https://doi.org/10.1371/journal.pone.0263646.t006
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The results showed that CODRS as an electronic monitoring (EM) system generated precise

and detailed catch data for the Indonesian deep demersal fishery. CODRS is also a part of a

global movement to transition from the conventional fishery-dependent data collection sys-

tems to more automated systems. However, even though the data recording process in

CODRS is semi-automated with cameras, the implementation of the system still relies heavily

Table 7. Changes in SPR and in relative abundance by size group for the 20 most abundant species in 2019 from 2018 in the CODRS dataset in (a) FMA 573, (b)

FMA 712. Unknown results indicated very low sample sizes.

FMA Species %< Lmat % < Lopt % > Linf % SPR

573 Pristipomoides multidens improving improving improving improving

573 Pristipomoides typus deteriorating deteriorating deteriorating stable

573 Lutjanus malabaricus deteriorating improving improving improving

573 Epinephelus areolatus deteriorating deteriorating deteriorating improving

573 Pristipomoides sieboldii deteriorating deteriorating deteriorating improving

573 Pristipomoides filamentosus deteriorating improving improving improving

573 Lutjanus erythropterus stable deteriorating improving improving

573 Paracaesio kusakarii improving improving improving improving

573 Lutjanus timorensis deteriorating improving deteriorating improving

573 Etelis coruscans improving improving improving improving

573 Pinjalo lewisi improving improving improving improving

573 Etelis sp. improving improving improving improving

573 Lutjanus sebae improving improving improving improving

573 Lutjanus vitta deteriorating improving improving improving

573 Aphareus rutilans deteriorating improving improving improving

573 Gymnocranius grandoculis improving improving improving improving

573 Etelis radiosus unknown unknown unknown unknown

573 Epinephelus morrhua improving improving improving improving

573 Parascolopsis eriomma stable improving improving improving

573 Glaucosoma buergeri improving improving improving improving

712 Lutjanus malabaricus deteriorating deteriorating deteriorating deteriorating

712 Epinephelus areolatus improving improving improving improving

712 Lutjanus erythropterus improving improving improving improving

712 Pristipomoides multidens deteriorating deteriorating deteriorating deteriorating

712 Lutjanus vitta deteriorating deteriorating deteriorating deteriorating

712 Diagramma pictum deteriorating deteriorating deteriorating deteriorating

712 Pinjalo pinjalo unknown unknown unknown unknown

712 Plectropomus maculatus unknown unknown unknown unknown

712 Epinephelus coioides unknown unknown unknown unknown

712 Carangoides chrysophrys deteriorating deteriorating deteriorating deteriorating

712 Lutjanus sebae deteriorating stable stable stable

712 Lethrinus lentjan deteriorating improving improving deteriorating

712 Pristipomoides typus deteriorating deteriorating deteriorating deteriorating

712 Gymnocranius grandoculis deteriorating deteriorating deteriorating deteriorating

712 Lutjanus johnii deteriorating deteriorating deteriorating deteriorating

712 Epinephelus bleekeri unknown unknown unknown unknown

712 Carangoides coeruleopinnatus improving improving stable improving

712 Carangoides gymnostethus unknown unknown unknown unknown

712 Lutjanus russelli unknown unknown unknown unknown

712 Rachycentron canadum unknown unknown unknown unknown

https://doi.org/10.1371/journal.pone.0263646.t007
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on human resources for intensive data analysis, training, and monitoring of captains and

crews. For example, after research technicians received data from fishers, the technicians

always needed to provide feedback on the data quality. Constant monitoring as a form of feed-

back was necessary to ensure compliance with the monitoring protocol [49]. Thus, pre- and

post-data collection efforts remain high and unavoidable, given the multi-species and disperse

nature of the fisheries.

In the context of the CODRS program, the most critical issues that we had to address were:

(i) captains needed to take photographs of their entire catch and not just a portion (i.e., by

excluding sharks and other bycatch) or their perception of the targeted catch; (ii) captains or

their designated crew needed to take photographs of sufficient quality (e.g., pictures were

sometimes blurry, or the camera was not appropriately angled); and (iii) captains needed to

position fish on the measuring board properly. If these problems were not identified by the

trained technicians, it would have led to poor data quality and misrepresentation of the catch.

The future of CODRS

To be a useful monitoring tool, scaling up the CODRS and adopting it as a long-term system is

crucial. Manual and automatic species identification have been tested in several multi-species

fisheries [14,16,50]. In manual species identification, reviewers watch video footage of the

catch and identify the species. Both CODRS and other similar systems face the same problem

of blurry imagery and human error in species identification. Automatic identification, on the

other hand, has showed promising results in some fisheries. One example is the Catch Meter, a

computer vision machine tested on Norwegian fishing vessels, which identified seven flatfish

species with 99.8% accuracy. However, the device (a camera stationed on top of a conveyor

belt carrying fish) is 3.5 meters long and not feasible to implement in the Indonesian deep

demersal fishing vessels. We expect that image analysis automation through artificial intelli-

gence will expedite the species identification process and remove many of the technical barri-

ers to data analysis [50]. Although still in development, these technologies should soon be

available, and CODRS would be improved significantly, both in accuracy and cost. In addition,

improvements in photo or video species recognition devices can promote and engage partici-

patory data collection as the automation will significantly reduce the workload of fishers and

captains.

The cost of deployment and implementation may be a hurdle to upscaling CODRS or

maintaining the system for long periods of time. Even though the initial price to implement

the system could be offset by the amount of data obtained and subsequent management impli-

cations, without proper funding strategies, government agencies might not choose to adopt it.

Especially since compliance may be tied to the monetary compensation, even with automated

species recognition, CODRS will be more expensive than logbooks. However, given the

amount of data obtained from CODRS and its accuracy, the value of this method far exceeds

that of other methods. Logbooks, observers, and CODRS all require fishers or observers to

provide unbiased and accurate data voluntarily, so this caveat is not exclusive to one method

over another.

In addition to providing catch and effort data, CODRS as a collaborative system could act

as a precursor to co-management of a fishery [51,52]. Collaborative approaches to fisheries

management have gained traction in recent years as a potential solution to data-poor and

open-access tropical fisheries such as those found across Indonesia [53]. This approach relies

on the sharing of power and knowledge between policy-makers, researchers, and resource-

users [54]. A potential next step would be to expand the CODRS network as a data-sharing

platform to initiate discussion on fishery trends and challenges among fishers and fish traders.
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Success has been shown in similar fisheries to this one, which fostered collaboration and data

collection for stock assessments [51,55].

Species composition and trade significance

CODRS data allowed researchers to discern catch composition at the species level. The most

important species in the catch by volume in 2019 was the Malabar Snapper (Lutjanus malabar-
icus), yielding close to 17,000 tons or 19% of the total catch in the fishery. Malabar snapper is

sometimes mixed in the trade (especially in trade of fillets) with other species such as the

Timor Snapper (Lutjanus timorensis) and the Mangrove Snapper (Lutjanus argentimaculatus).
Production of Timor Snapper and Mangrove Snapper, however, is not very high in Indonesia.

Two more snapper species of the genus Lutjanus, the Crimson Snapper (Lutjanus erythrop-
terus) and the Red Emperor (Lutjanus sebae), are usually traded separately and both make the

list of top 20 species with more than 1,500 tons of Crimson Snapper and close to 1,300 tons of

Red Emperor. The above five species of Lutjanids, which are all red in color and are therefore

sometimes traded as "Red Snapper", together accounted for close to 22,000 tons and close to

25% of the total deep demersal fisheries catch in 2019.

The second most important species in the catch was the Goldband Snapper (Pristipomoides
multidens), which yielded over 13,000 tons in 2019. This species is commonly mixed in the

trade with the Sharptooth Jobfish (Pristipomoides typus) of which close to 2,500 tons was

landed in 2019. One more look-alike species, the Opakapaka (Pristipomoides filamentosus), is

usually traded separately and was also in the list of top 20 species with more than 1,350 tons

landed in 2019. These three closely resembling species of the genus Pristipomoides, all reddish

in color including one with gold colored bands, totalled around 17,000 tons or close to 20% of

the deep demersal fisheries catch in 2019.

A third important group of red colored snappers (Lutjanidae) includes the Rusty Jobfish or

Lehi (Aphareus rutilans), the Ruby Snappers or Ehu (Etelis carbunculus and Etelis sp.), the Pale

Snapper (Etelis radiosus) and the Flame Snapper or Onaga (Etelis coruscans). Together these

large red colored snappers accounted for another 15,000 tons or 17% of the catch in 2019. Ete-
lis carbunculus is a rare (and smaller) species in Indonesia, while its larger cousin has not yet

been scientifically described. The Pale Snapper, Etelis radiosus, is often combined in the trade

with Etelis sp. under "Ruby Snapper" or "Ehu", which is often incorrectly labelled as Etelis
carbunculus.

There are several more red or reddish colored snappers in the deep demersal fisheries

catch, such as L. bitaeniatus, L. bohar, L. gibbus, L. johnii, L. russeli, and L. lemniscatus. The

trade name "Red Snapper" is clearly not useful in identifying the species or even the genus of

the fish. Outside the genus of the Lutjanids, red colored snappers with common name Slender

Pinjalo (Pinjalo lewisi) often get mixed in the trade with the above-mentioned Crimson Snap-

per (L. erythropterus), while Chinaman Snapper (Symphorus nematophorus) is usually filleted

and cut into "portions" and sometimes sold as Malabar Snapper. More species from other gen-

era are mixed in the snapper trade, especially in "skin off" fillets and "portions", where skin

color is of no consequence. This includes one more snapper species from the list of top 20 spe-

cies, the Green Jobfish (Aprion virescens), contributing well over 1,500 tons to the total catch

in 2019, as well as other poorly known species such as the Saddle-back Snapper Paracaesio
kusakarii and other Paracaesio spp. Altogether, the above mentioned snapper species, many

but not all of them red in color, contributed more than 60,000 tons to the total deep demersal

fisheries catch in 2019.

Non-snapper species in the top 20 of deep demersal catches include two species of groupers,

the large growing Orange Spotted Grouper or Estuary Cod (Epinephelus coioides) and the
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smaller Areolate Grouper or Square Tail Rock Cod (Epinephelus areolatus). Both species con-

tributed around 7,700 tons to the deep demersal catch. Two major species of emperors, the

Long Nose Emperor (Lethrinus olivaceus) and the Blue-lined Emperor (Gymnocranius grando-
culis) jointly contributed close to 2,500 tons to the catch. A third species of emperor, the Grass

Emperor (Lethrinus laticaudis) was important locally in the Arafura Sea fisheries, where the

Orange Croaker (Attrobuca brevis) and Black Jewfish (Protonibea diacanthus) were also abun-

dant in local catches. Jacks, trevallies and grunts added almost 6,000 tons of mostly lower value

species. The top 20 species in the catch in terms of volume together accounted for almost

71,000 tons or close to 80% of the entire catch of our 100 target species.

The validity of the updated life history parameters

We noted a lack of consistency in Lmat values across studies over the range of our target spe-

cies. For example, Lmat studies of P. filamentosus from latitudes near the equator tended to esti-

mate larger values than values published in studies conducted at higher latitudes [56–58].

However, the opposite trend occurred in Lmat values for L. sebae, L. malabaricus, and L. ery-
thropterus [19,59,60]. Lmat estimates from our methodology for P. sieboldii, P. filamentosus, L.

sebae, L. malabaricus, L. erythropterus, and Epinephelus areolatus were somewhere in the mid-

dle of previously published ranges. Our Lmat estimates of P.multidens and Etelis sp. were lower

than previous estimates in similar latitudes [5,59,60]. Finally, our Lmat estimates of Lutjanus
vitta and Lethrinus laticaudis were larger than previous estimates. Values calculated from

CODRS compared to those from the literature that were either inside or outside the latitude

range of where they were caught in this study.

The broad range in published values for Lmat within species highlights the need for caution

before referring to any particular value or study as well as a need for establishing local esti-

mates, because changes in estimates for Lmat will directly affect conclusions from stock assess-

ments. For example, Lmat for P. multidens had the largest range of values from the literature,

with 35 cm being the lowest [61] and 61 cm the highest [59]; ours was 50 cm. Mees [56] esti-

mated Lmat for P. filamentosus in the Seychelles (58 cm) with samples encompassing a wide

size range and large sample size. But then Ralston and Miyamoto [57] estimated Lmat at 44 cm

from a very limited sample size. None of the previous research can represent the Lmat of P. fila-
mentosus in Indonesian waters, however, as our estimate is between the values proposed by the

two studies. Lmat values for L. laticaudis were 22 cm (female) and 18 cm (male) [62]. These val-

ues were lower than our Lmat estimate; however, they originated from Shark Bay, Western Aus-

tralia, which is outside the latitudinal range of our catches. The lack of previous maturity

research on these species leads to high uncertainties in estimating plausible ranges for Lmat.

While reviewing literature, statistics, and trading reports, determining the validity of pub-

lished data remained a challenge due to potential species misidentification. Aphareus rutilans,
for example, has sometimes been traded as Aphareus furca, which has a much smaller Lmax

than A. rutilans, and predominantly lives in shallower habitat. Only after better understanding

the fisheries (fishing area, depth, gear type, and species distribution) could we infer that what

has been recorded as A. furca prior to the present study was actually A. rutilans. In another

example, differences between Etelis carbunculus and Etelis sp. have only recently been

reported. The latter species grows more than twice as long as the former, is an important spe-

cies in the deep demersal fisheries, but has yet to be scientifically described. Literature from

before 2015 refers only to E. carbunculus with life-history parameter values reported that could

only have come from Etelis sp. Numerous publications from before 2015 also misidentified the

most common snapper in the deep demersal fisheries, Lutjanus malabaricus as Lutjanus san-
guineus, a species that does not even occur in Indonesia. Such misidentifications of species
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have in the past resulted in many misunderstandings related to the Indonesian deep demersal

fisheries, but with the image-based CODRS approach, our data can always be verified by

returning to the photographs.

We also found a disparity between available information in the literature and abundance of

the species in the catch. Hardly any studies were available for Pristipomoides typus, the third

most abundant snapper species in CODRS dataset. P. typus is often mixed by traders with P.

multidens due to their morphological similarities. However, P. multidens grows to a larger

maximum size than P. typus and thus has different life-history parameters. Very few studies

were available on life-history parameters or other biological characteristics of the most abun-

dant grouper in these fisheries, Epinephelus areolatus. Maturity studies were lacking for Aphar-
eus rutilans, Pinjalo lewisi, and Paracaesio kusakarii, despite their prevalence in the catches.

These disparities highlighted a data gap in the literature that would have hampered our under-

standing of these important deep demersal fisheries without the new information obtained

from the CODRS approach.

Management implications

Length-based stock assessments showed high risks of overfishing for most target species in the

deep demersal fisheries in Indonesia, especially for snapper species with large Lmax. All major

target species of snapper showed a steep decline in catch volume and size where they are most

vulnerable to fishing. This steep decline indicates high fishing mortality for the vulnerable size

classes. For several snapper species, fishers consistently targeted and landed catches well below

Lmat. Almost all the larger species were harvested well below Lopt. Most grouper species, on the

other hand, had already reached or passed Lopt when they were caught by the deep demersal

fisheries in Indonesia.

The increased granularity in CODRS data allows these findings to be directly applicable to

managers in each FMA to determine each species’ importance to the fishing industry and risk

of overfishing. We found common or trade names that were previously utilized were not ade-

quate to be a basis for management strategies. For example, we noted differences in over-

exploitation risk for species marketed under the same trade name (e.g., L. malabaricus and L.

timorensis as ’red snapper’). Because of the differences in Lmat, the same plate-sized trade limit

would have a higher impact on L.malabaricus than on L. timorensis. We also noted differences

in over-exploitation risks and top species among FMAs, making homogeneous species-based

management not possible. Our results allow managers in each FMA to focus on strategies for

the dominant and most vulnerable species in the area. For example, L. erythropterus has a high

risk of over-exploitation based on all metrics and is a dominant catch species in FMA 712.

However, L. erytropterus has a low and medium risk of over-exploitation based on the length-

based history parameters and SPR, respectively, and is a less frequently caught species in FMA

573.

Based on the vessel and catch characteristics, we identified two management recommenda-

tions that can improve sustainability of the fisheries. Our first recommendation is to reduce

market demand for juvenile fish. Traders should adjust their purchase orders, which usually

specify quantities of fish by size bracket, to avoid sourcing juvenile fish. Some experimental

evidence exists that, at least for some species, reduced demand for juveniles will result in a

reduction of fishing mortality [63]. In consideration of this recommendation, one of Indone-

sia’s Fishery Improvement Projects (FIP) that is moving towards certification to Marine Stew-

ardship Council standards required its participants to avoid sourcing of juvenile snappers.

Furthermore, market preference for small size classes (i.e., plate-size fillets) could be reduced

through awareness campaigns that clarify to the public that this preference impairs fisheries
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sustainability. In addition, the government could consider imposing a legal minimum size cor-

responding to the size at first maturity. Since it will be difficult to enforce this measure on

remote landing sites, the government may consider to apply this measure to processing plants

and cold storage facilities only. This measure will offer partial protection to juvenile fish and

allow a larger proportion of recruits to contribute to the spawning stock.

Our second recommendation is to cap fishing effort at the current level and explore incen-

tives for effort reductions, either by gradually reducing the number of active licenses or short-

ening the fishing season. These measures can be implemented through Indonesia’s licensing

system, and for larger boats (> 30 GT), Indonesia’s Vessel Monitoring System allows for effi-

cient enforcement of this measure. For fishing vessels that are smaller than 10 GT, which are

not subject to the licensing system, an area-based approach (Marine Protected Areas) and/or

co-management schemes may be effective as a means to control fishing effort [64,65]. Contin-

uous monitoring of trends in the various size-based indicators will show the direction these

fisheries are heading and the effects of any fisheries management measures in future years.

Conclusions

A multi-species data collection program of the scale of this study has never been documented

before in tropical deep demersal fisheries. Our Crew Operated Data Recording System

(CODRS) proved to be an efficient and effective system to collect high-resolution catch and

effort data, including species and size distribution of catches, fishing locations, and detailed

information on fleet size, gear types, and fleet dynamics. Data issues caused by offloading at

sea, reporting of "commercial" catch only instead of the total catch, catch consumed by the

crew or used as bait, did not affect CODRS data, whereas these would have had led to data bias

in port sampling programs.

The vast quantity and quality of verifiable image-based length measurements by species in

the catch enabled us to update important life-history parameters, perform length-based stock

assessments, and ultimately generate actionable management advice. Catch characteristics and

stock assessment results using CODRS data showed differences in the sustainability of the spe-

cies across the FMAs. The fishing industry can influence catch sizes by establishing larger

trade sizes for snapper species. This initiative may be complemented by government regula-

tions on minimum allowable sizes for all species. The government must also take action to cap

or reduce fishing effort. Especially for unlicensed smaller-scale fishers, which contributes to

most of the catches in the fishery, co-management schemes and/or no-take closures may be

essential tools in steering the fisheries to a healthy status.
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